

AZD135 - On-Ear Wear Detect Design Guide

Design Guide for On-Ear Wear Detection

Contents

1	Introduction					
2	Desig 2.1 2.2 2.3 2.4 2.5 2.6 2.7	n Specifi Mechani Electrica Operatio Sensing Report F Commur Test Poir	ication / Product Requirements ical Specification	4 4 5 5 5 5 5 5		
3	Prop 3.1 3.2 3.3 3.4 3.5	Sed Solu Typical C Sensing System I Mechani Azoteq I	Jtion Dn-Ear Layout Methods for On-Ear Designs Description Loss of the second se	6 6 6 7 8		
4	Desig 4.1 4.2 4.3	gn Resources 1 Datasheets, Application Notes and User Guides 1 Hardware Design Resources 1 Software, Tools and Example Code 1				
5	Desig 5.1 5.2 5.3	n Implen Sensor I Circuit D 5.2.1 5.2.2 5.2.3 5.2.4 PCB Lay	nentation Design Design Power Supply Decoupling and Regulation Capacitive Sensor Nodes Routing Connections yout Design	11 12 12 12 12 12 12		
	5.4 IC Sei 5.4.1 5.4.2	5.4	5.4.1 5.4.2	Channel Settings	14 14 15	
6	Desig 6.1 6.2 6.3 6.4	n Verifica Test Sett Respons Tempera Noise Te	ation up	17 17 18 21 21		
7	Interf a 7.1	ace Desc Software 7.1.1 7.1.2	Pription Implementation Example Host Software Flow Communication Protocol	22 22 24 24		

8 Mass Production Testing			
	8.1	In-circuit Testing (ICT)	25
	8.2	Response vs Current Consumption	25
9	Revis	ion History	27

1 Introduction

The aim of this document is to give a step-by-step guide on how to design capacitive sensors for onear wear detection applications. The Azoteq technology used for this application provides an intuitive low power detection solution.

A summary of the design process is shown below:

This design guideline aids designers with integrating ProxSense[®] technology into new and existing designs. The guideline will give general recommendations for a quick-start design of detecting wear in an on-ear configuration. Please take note that this document should only guide you towards a final design. Designs discussed in this document should not be scaled directly to suit your application, and all considerations should be kept in mind. The design guidelines are for designs that employ both self-capacitive and/or mutual capacitive sensing. For a more in-depth explanation of capacitive sensing refer to AZD004.

The document is structured as follows: Chapter 2 outlines the design specifications for on-ear wear detection. Chapter 3 describes the capacitive proximity solution offered by Azoteq. Chapter 4 provides various resources to aid in the design of wear detection solutions. Chapter 5 demonstrates an example design of a on-ear wear detection solution utilizing the IQS318. Chapter 6 provides a process for validating the keyboard proximity design to ensure the requirements are met. Chapter 7 describes the interface between the master MCU and the sensor. Chapter 8 discusses important considerations for moving the wear detection solution into production.

2 Design Specification / Product Requirements

This chapter outlines the key specifications for the On-Ear detection sensor that needs to be considered during the design process.

2.1 Mechanical Specification

In on-ear headphone designs, the driver — also known as the speaker or transducer — is specifically engineered to align with the user's ear. It's only natural to leverage this existing mechanical design when incorporating a wear detection electrode. The driver is typically enclosed in a perforated plastic housing to allow sound transmission. This housing is often cushioned and enveloped with fabric for comfort and aesthetics. Consequently, this plastic enclosure emerges as the prime location for the electrode.

Considering the typical diameters of on-ear drivers, which range from 30mm to 40mm, the weardetection electrode should cover at least 30% of the driver's surface area.

2.2 Electrical Interface Specification

The specifications for sensor electrical and interface design are listed in the table below.

Specification	Requirement
Supply Voltage (V _{DD})	1.8V - 3.3V
Internal Regulation (V _{REG})	Digital and analogue domains (requires external decoupling capacitors)
Communication Interface	I ² C (SCL & SDA) + interrupt / data-ready (RDY active-low) for event indication
Master Reset Control	MCLR (some devices time share functionality on the same pin as RDY)
Additional Outputs	Optional, Up to 3x outputs with custom configurable logic and output assignment
ESD protection	 HBM up to class 3A and -B or IEC 61000-4-2 standard level 4 (contact and air discharge) System level qualification of finished product with the necessary protection can be achieved with the recommended series resistance on sensor (CRX) pins and the use of exposed ground traces and pours/floods for safe discharge. Extreme measures incorporates the use of TVS diodes to clamp nodes when and where necessary.
Radiated noise immunity	IEC 61000-4-3 standard test level 2 and 3 (3 V/m – 10 V/m) Appropriate capacitive decoupling and sensor series resistive elements (low-pass filter) component implementation and the placement thereof towards effective decoupling ground sites which are sufficiently stitched and commonly connected in a system are crucial for improved radiated immunity. Consider antenna placement and feed lines with higher energy flow
Current consumption	Application use of different sensors, UIs and response rate requirements may influence the current budget minimum allocation and brief periods of increased consumption. Optimisation of low power (sleep) current drawn should be minimised for extended idle periods. Current consumption for wear detection applications are dependent on the response rate. A higher response rate requires higher current consumption and vice versa. It is possible to achieve sufficient performance below 10 µA in some cases.

Table 2.1: Electrical Specifications

2.3 Operational Environment Specification

The specifications for sensor operational environments are listed in the table below.

Specification	Self-capacitive	Mutual capacitive
Typical product temperature range	-10°C to +60°C	-10°C to +60°C
Product operational relative humidity range	30- to 70 %RH	30- to 70 %RH
Usable charge transfer frequency range	125 kHz – 1 MHz	500 kHz – 4 MHz

Table 2.2: Operational Environment Specifications

2.4 Sensing Range

In wear detection systems for on-ear headphones, where the electrode is aligned with the driver, user proximity and considerations regarding air gaps are essential to ensure accurate sensing. Factors such as electrode positioning, the thickness of the plastic surround and the choice and arrangement of foam or fabric can impact the system's efficacy. Typically, such an on-ear design has a sensing range that spans between 15mm and 25mm from the electrode to the user.

2.5 Report Rate and Wake-up Response Time

Table 2.3: Report Rate and Wake-up Response Time

Specification	Requirement	
Sensor Configuration Start Up Time	< 1000 ms	
Active Mode Report Rate	\geq 50 ms ⁱ	
Low Power Mode Report Rate	\leq 160 ms	
Activation Timeout	0 ms (Never)	

The activation timeout should be set to zero. In wear detection applications, the system is designed to accommodate prolonged periods of either activation or deactivation. Intuitive release algorithms manage the transition from activation back to deactivation.

2.6 Communication Interface

For I2C solutions, use "Event Mode" to prompt an interrupt (through the RDY line) to the master solely when an event, such as a Wear or Wear Release, is detected. This approach conserves power and reduces MCU processing demands.

In a standalone configuration, a GPIO level can be used to indicate the activation or wear detection state.

2.7 Test Points

Exposed copper test points are required for VDD, GND, SDA, SCL and RDY. The test points are used during production testing for rapid debugging of the proximity sensor.

ⁱA higher report rate can be set to achieve better responsiveness but with an increased current consumption.

3 Proposed Solution

This chapter provides a high-level overview of Azoteq's on-ear wear detection solutions, including a a brief overview of different sensing methods, system diagram, a mechanical stack-up, and a list of recommended Azoteq part numbers.

3.1 Typical On-Ear Layout

Wear detection for on-ear products is inherently consistent across applications, as they all interface with the user's ear. While the detection distance might vary due to specific design nuances, the proposed solution is versatile and can be easily adapted for different scenarios.

Figure 3.1: Typical On-Ear Headphone Representation

The electrode pattern typically follows the cut-out cavity between the speaker and the speaker grille.

3.2 Sensing Methods for On-Ear Designs

For on-ear designs, a self-capacitive sensing electrode pattern paired with a self-capacitive reference pattern is advised. While projected capacitive designs are an alternative, they're best suited for specific scenarios:

- > when the signal strength obtained from user interaction is lower than anticipated,
- > when the distance between the ear and sensor exceeds expectations, or
- > when the humidity inside the cup significantly surpasses the norm (> 90%).

In standard conditions, the use of self-capacitance remains the preferred approach.

3.3 System Description

On a high level the system overview is comprised of three main sections:

- > The user
- > The sensor solution

> The host (main controller / processor)

The sensor slave controller (IQS device IC) is required to accommodate customisable setup(s) specific to hardware designs and UI requirements and will operate as required to sense, process and qualify detection of low-level measurement data while also doing the validation for user interaction events. Only when a valid event interaction is registered, the host will be interrupted to service and read the reported event state and detail via the dedicated communication interface, thus minimising the data transfer, latency, processing overhead and service priority (ISR) required so that other more important tasks on the host side can be handled with optimal/required resource allocation.

Figure 3.2 provides a system block diagram of a generic I2C on-ear implementation with wear detection.

Figure 3.2: System Block Diagram

3.4 Mechanical Stackup

The design of on-ear headphones provides an optimal setup for incorporating wear detection. The driver, also known as the speaker, is nestled within an acoustically ventilated plastic enclosure, cushioned, and enveloped in fabric. For best wear detection results, it's recommended to position the sensor directly on the speaker grille. This strategic placement efficiently senses ear presence and significantly reduces interference from users gripping the earphones.

To enhance audio quality, it's essential to incorporate a notable proportion of PCB/FPC cut-outs in the design, which can ideally mirror the speaker grille's outline. The IC, which processes sensor data, should be situated close to the sensing pattern, optimizing performance, and streamlining the final validation and robustness testing process. If the IC is on the main PCB and not the sensing board, it's vital to use a shielded cable or twisted pair for the sensor line connection, ensuring minimal interference.

Figure 3.3: Typical On-Ear Assembly

3.5 Azoteq Device Selection Guide

The following listed devices are Azoteq's recommended on-ear wear detection solutions.

- > IQS7222C (WLCSP18 [1.62 x 1.62 x 0.5 mm] QFN20 [3 x 3 x 0.5 mm])
 - Up to 4 self-capacitive channels
 - Up to 4 mutual capacitive channels
 - * Differential mutual capacitance available
 - Arduino Example code available
- > IQS323 (WLCSP11 [1.48 x 1.08 x 0.345 mm] DFN12 [3 x 3 x 0.75 mm])
 - Single channel self-capacitive sensor
 - Built-in signal processing options:
 - * Standalone proximity output
 - * Movement user interface
 - * Release user interface
 - Arduino Example code available
- > IQS318 (WLCSP11 [1.48 x 1.08 x 0.345 mm] DFN12 [3 x 3 x 0.75 mm])
 - Single channel self-capacitive sensor
 - Built-in signal processing options:
 - * Standalone proximity output
 - * Release user interface

Comparison Table

Product	Features	Integration Level	Reference
IQS7222C	High integration, Can add additional buttons and slider, Many refer- ence MP products	High	Validated in numerous mass-produced prod- ucts
IQS323	Similar to IQS7222C, Can add capacitive touch or inductive button	Medium	Similar to IQS7222C
IQS318	Integrated UI for multi- direction detection	Specific for on-ear applications	1-Channel I2C / GPIO options available

4 Design Resources

For all sensor design resources please refer to the Azoteq website: ProxFusion combination sensors

4.1 Datasheets, Application Notes and User Guides

- > IQS Device Datasheets
- > AZD004 Azoteq Sensing overview
- > AZD044 Azoteq MSL and Reflow specifications
- > AZD125 Capacitive sensing design guide
- > AZD102 Series resistance limit of self capacitance charge transfers

4.2 Hardware Design Resources

- > IQS7222CzzzQNR [QFN20] SCH symbol and PCB footprint
- > IQS7222CzzzCSR [WLCSP18] SCH symbol and PCB footprint
- > IQS323zzzDNR [DFN12] SCH symbol and PCB footprint
- > IQS323zzzCSR [WLCSP11] SCH symbol and PCB footprint
- > IQS318zzzCSR [WLCSP11] SCH symbol and PCB footprint

4.3 Software, Tools and Example Code

- > Arduino Example code and user guide
- > Graphical user interface software and tools
- > CT210A Azoteq Configuration tool

5 Design Implementation

This chapter describes the design implementation of wear detection in an on-ear headphone configuration.

5.1 Sensor Design

Given the inherent need for cut-outs in the sensor electrode to meet acoustical requirements, it's vital to ensure they maintain comprehensive sensor coverage and robust signal amplitude. Bearing this in mind, utilizing a self-capacitance sensor with a copper pour can yield an optimal layout within the available real estate. While a thin FR4 substrate is recommended, FPC alternatives can also be effective.

Implementing a wear reference enhances the effectiveness in counteracting capacitance drift, which can arise from material variations and environmental factors such as temperature and humidity. For more detailed guidance on implementing a wear reference, refer to section 7 of AZD125.

For the most effective signal-to-drift ratio, especially in long-term wear applications, the recommended placement of the IC is directly on the sensor pad. Conversely, positioning the sensor IC on the primary PCB can yield adequate results, provided the distance remains minimal and there's effective management of the GND shielding capacitance drift. For instance, when the sensor and reference traces run adjacent but in separate time slots, they can function as a GND shield for one another. In such configurations, the use of a twisted or shielded wire pair is advocated. It's imperative to mitigate any mechanical impacts on this wire to avert inadvertent capacitive shifts during regular usage.

Figure 5.1: Wear Detection Electrode Design

In previous sections, it was established that the wear detection electrode for an on-ear headphone design typically aligns with the outline of the speaker grille. This principle is evident in the design depicted in Figure 5.1 above, where the FPC not only mirrors this outline but also houses the noise-cancelling microphone and speaker terminals. The main wear detection electrode is highlighted in the figure. Additionally, the thin reference channel encircling the outline is also emphasised.

5.2 Circuit Design

A circuit was designed with the IQS323 (DFN12 package) and a simplified schematic diagram is shown in figure 5.2 below. Note that CRX0 is the sensor trace and CRX1 is the reference trace.

Figure 5.2: Simplified Schematic Design for Wear Detection Solutionⁱ

5.2.1 Power Supply Decoupling and Regulation

All IQS devices require external decoupling capacitors on their supply (VDD) as well as internal regulation (VREG) pins. Please refer to IQS device specific datasheets for implementation and guidance for optimal component selection, size and placement/routing considerations.

5.2.2 Capacitive Sensor Nodes

All the self-capacitive sensor inputs (CRX) are supplied with a standard series resistance to increase radiated immunity and will sense the connected electrodes accordingly (please refer to AZD125 for fundamental design discussions; AZD015 for considerations of radiated/RF immunity; AZD102 on using resistive paths higher than the recommended). A TVS diode should be added on the sensor inputs to suppress any induced voltage spikes.

5.2.3 Routing

Digital signals such as PWM signals, I2C or SPI are active during a capacitive measurement, therefore it is recommended that the digital signals be kept a minimum of 4 mm away from the capacitive sensor traces, preferably on the bottom layer of the PCB. Refer to AZD125 for more details on routing.

5.2.4 Connections

Test points are essential for efficient design development, debugging, and validation. They're recommended when they can be situated on an FPC tail or when the sensor PCB components occupy minimal space. When the sensor IC is placed on the main board, adding test points nearby for power and communication simplifies troubleshooting during production.

ⁱAlthough this design makes use of the IQS323, the IQS318 can also be used as they are pin compatible. The IQS7222C can also be used in a similar schematic configuration.

5.3 PCB Layout Design

Figure 5.3 provides a visual representation of the on-ear wear detection solution's printed circuit board (PCB).

Figure 5.3: On-Ear Wear Detection Solution PCB

5.4 IC Setup

The graphical user interface (GUI) is a powerful support/design tool to simplify the process of configuring the IQS device with the parameters required for optimal performance for customer-specific hardware.

An introduction on how to use Azoteq's debug and display tool can be seen in this video.

The latest GUI can be obtained from the relevant product page on Azoteq's website as listed in Chapter 4.

The settings below are shown on the GUI for the IQS323, however these concepts also apply to the IQS318 and IQS7222C.

5.4.1 Channel Settings

Channel sensor settings can be seen in figure 5.4 below.

🖗 Settings				– 🗆 ×
	Cha	nnel 0 Sensor Setu	φ	
EVKit Modules	PXS Mode:		Sensor 0 Conversion	Frequency:
Power & System Settings Channel 0 Sensor Setup	Self Capacitance	~	500kHz	v
Channel 0 ATI Settings	Wav Pattern 0 Select	:	Wav Pattern 1 Selec	t:
Channel 0 UI Settings	Self Capacitance	~	None	Y
Channel 1 Sensor Setup	Way Pattern Sele	ect (Check to select	Way Pattern 1)	
Channel 1 ATI Settings	<u>man rattern bere</u>	ter (eneek to select	Wav Futterin I)	
Channel 1 UI Settings	CTx0	CTx1	CTx2	TxA
Channel 2 Sensor Setup				
Channel 2 ATI Settings				
Channel 2 UI Settings	 Enable Channel 	Dual Direct	Vbias	FOSC TX frequency
Slider UI Settings	_	_	_	
Slider Gesture Settings	Linearise Counts	Invert	0v5 Discharge	🖌 Dead Time Enable
Release UI Settings	Inactive Rxs:	Cs Size:	S/H bias current:	Max Counts:
Filter Betas	VSS ~	80pF ~	7uA ∽	4095 ×
	CTx Selection			
	CTx0	CTx1	CTx2	TxA
	CRx Selection			
	CRx0	CRx1	CRx2	PXS Bias Current
	Calibration Capacitor Select	Internal Reference		
	WRITE	E CHANGES READ SETTIN	GS	
		No Changes To Write		

Figure 5.4: Channel Sensor Setup

The selection of CTx and CRx can be altered to designate the Sensor Cx pin for the desired channel, providing more flexibility in the PCB layout by enabling the choice of alternative pins if necessary. It's important to note that for self-capacitance applications, like the one discussed in this design guide, it is imperative to select both the CTx and CRx pins.

🖋 Settings	– 🗆 X
	Channel 0 UI Settings
EVKit Modules	Proximity Detection Settings
Power & System Settings	
Channel 0 Sensor Setup	
Channel 0 ATI Settings	Prox Threshold
Channel 0 UI Settings	10 🗢
Channel 1 Sensor Setup	10 counts
Channel 1 ATI Settings	
Channel 1 UI Settings	Prox Debounce Enter Prox Debounce Exit
Channel 2 Sensor Setup	
Channel 2 ATI Settings	2 🗸
Channel 2 UI Settings	Touch Detection Settings
Slider UI Settings	
Slider Gesture Settings	Touch Thushald Touch Uniterests
Release UI Settings	
Fliter Betas	7 41 9/8/TA 25 0076 9/
	7,41 % LIA 23,0910 %
	Reference Channel Settings
	Channel Mode: Reference Sensor ID:
	Follower × 1 ×
	Follower Event Mask
	CH0 Prox CH1 Prox CH2 Prox CH0 Touch CH1 Touch CH2 Touch
	Follower Weight
	99,98336 %
	WRITE CHANGES READ SETTINGS
	No Changes To Write

Figure 5.5: Channel UI Settings

Channel UI settings can be seen in figure 5.5 above. Here the channel activation thresholds can be adjusted.

5.4.2 System Settings

Power and System settings can be seen in figure 5.6 below. Here power mode timeouts, report rates and event settings can be configured.

🖨 Settings		- 🗆 ×
	Power & System Settir	ngs
EVKit Modules	Power Mode:	Interface Selection:
Power & System Settings	Automatic No ULP Y	I2C Events Y
Channel 0 Sensor Setup		
Channel 0 ATI Settings	Power Mode Timeout	Auto Prox Cycle Select:
Channel 0 UI Settings	0 🜩	32 *
Channel 1 Sensor Setup	0 ms	
Channel 1 ATI Settings		
Channel 1 UI Settings	Normal Power Mode Report Rate	Low Power Mode Report Rate
Channel 2 Sensor Setup	20 🗢	0
Channel 2 ATI Settings	20 ms	0 ms
Channel 2 UI Settings		
Slider UI Settings	Ultra Low Power Mode Report Rate	HALT Mode Report Rate
Slider Gesture Settings	0	0
Release UI Settings	0 ms	0 ms
Filler belds		
	Prox Event Timeout	Touch Event Timeout
	6 📥	10
	35	55
	Channel 0 Timeout Disable 🗹 Channel 1	Timeout Disable 🗌 Channel 2 Timeout Disable
	Events Enable	
	Prox Event 🗹 Touch Event	Slider Event
	Power Event ATI Event	ATI Error
	OutA Output configuration	OutA Output
	OutA Active Logic:	
	OutA Active High	
	Prox Touch Slider Power	ATI Event ATI Active ATI Error
	CH0 Prox CH1 Prox CH2 Prox	CH0 Touch CH1 Touch CH2 Touch
	WRITE CHANGES READ SETTIN	
	No Changes To Write	
L	no changes to write	

Figure 5.6: Power and System Settings

Event Mode should be enabled to prevent the master MCU from being interrupted unnecessarily.

Firstly, configure which events should be generated in event mode. In this case, the channel activation event will generate an event only when a channel activation occurs due to proximity or touch. Data can be read when a communication window opens due to the event occurring.

Enable the Event Mode bit when the MCU has finished the I^2C initialisation process.

The report rate and power mode timeout should be adjusted to meet the response and current consumption specification. A lower report rate will result in higher current consumption and vice-versa.

6 Design Verification

This chapter describes the general procedure that should be followed to validate whether a design meets the original requirements. This is done during the engineering stage. Using the numerous configurations available on the Azoteq device, small adjustments can be made to optimise and improve the performance to meet the requirements.

With the design verified, similar performance will be expected in mass production due to the on-chip calibration (ATI) technology, an individual verification of each of these items is not needed in mass production testing phase.

6.1 Test Setup

Design verification is done using the product GUI. Connect the power, I^2C and RDY lines of the IQS7222C / IQS318 / IQS323 to the CT210A USB dongle as shown in the table and figure below. Now connect the CT210A via an USB-micro cable to an available USB port on a PC.

IQS Pins	CT210A Pins
GND	Pin 1
VDD	Pin 3
MCLR	Pin 5
SDA	Pin 7
SCL	Pin 9
RDY	Pin 10

Table 6.1: CT210A Pin-out

Figure 6.1: CT210A Power, I²C And RDY Connections

The typical procedure to evaluate a device is as follows:

- > Open the device-specific GUI software
- > start up the device by clicking the "START STREAMING" button
- > Initiate the streaming of device data by clicking the "ACK RESET" button
- > Load the application-specific configuration settings using the "IMPORT H FILE" button, or configure the device manually by pressing the "USER SETTINGS" button and using the various options available in the submenus
- > Ensure that the ATI algorithm has executed correctly after the changes in the previous step have been applied
- > View the channel or system response by means of the bar, scope or event indications
- Specific operating modes (such as low power sampling or event mode operation) can also be induced for example to measure currents or to monitor I²C and RDY logic behaviour and event activities.

For further detailed information on the related device and/or GUI support please consult the necessary documents as listed in Chapter 4.

6.2 Response Output

Evaluating the response of a sensor in real-time is beneficial for rapid setup, tuning and prototyping.

For the IQS318, the wear and release signal are obtained through a single channel. On the IQS323 and IQS7222C, one channel is used for the wear signal and one channel is used for the release signal. The example in this section is based on this type of two channel solution.

Depicted below is the response output of a typical wear detection configuration where CH0 acts as the wear activation channel, CH1 acts as the reference channel for CH0, and CH2 acts as the wear release channel.

Figure 6.2: GUI Bar Output For Count And LTA Data while activated in Wear

Figure 6.3: GUI Bar Output For Count And LTA Data when indicating release

Now putting the two together on the scope view - wear first followed by the release.

Figure 6.4: General GUI Scope Output For Count And LTA Data

In addition, the follow scope view shows what happens if an electrode is powered up while in wear and then released. The value of CH2 specifically detecting a release is shown here.

Figure 6.5: General GUI Scope Output For Count And LTA Data

This is a self-capacitive setup where the counts are not linearised and an increase in capacitance results in an decrease in counts. While still not linearised, the output of CH2 are inverted, which provides an wear release indication. This is especially useful if the device was powered-on while being worn and in wear. To save power, CH2 can be disabled after the first release event after poweron.

The outputs shown in figures 6.2, 6.3 and 6.4 are the results while the system ground is referenced to earth ground (USB Powered). The test setup can be seen in figures 6.6 and 6.7 below.

Figure 6.6: Proximity Range Test Setup

Figure 6.7: Proximity Range Test Setup

To thoroughly evaluate and analyze the response of the sensors, it is recommended to gather sample data through logging sessions. These sessions may involve extended activation periods, temperature or humidity variations, or other stimuli, depending on the specific use case or qualification being examined. To ensure a robust device, sample data should be collected where the headphones are placed on a diverse range of testers with regards to headsize, earsize and long vs short hair.

6.3 Temperature and Humidity Tests

A temperature and humidity controlled environmental chamber can be used to validate sensor reliability and performance within product operating specifications. However, this may not simulate the true environment for typical real life product use scenarios and dynamic combinations thereof. Some of the challenges typically experienced includes inducing wear versus out of wear state changes, body heat influence and other system operational influences. Practical use of the on-ear headphone product in different environments should form part of the functional testing during design validation.

6.4 Noise Tests

Normal product noise variation should be evaluated over numerous pre-production units/builds before starting mass production testing in order to gain performance metrics and statistics for establishing the upcoming production limits. An applicable noise failure limit must be considered to reject excessively noisy sensors with presumable quality or assembly issues. Standardised noise tests (whether aimed at radiated and/or conducted noise) as well as other product performance qualifications governed by international standards, should be considered according to the specific underwriting by the IEC body or other known standard body which the product needs to comply with.

7 Interface Description

This chapter provides some high-level information that should be beneficial to a firmware developer who wants to write a driver for one of Azoteq's ICs in a wear detection application. The chapter should be read in conjunction with the relevant device's datasheet.

7.1 Software Implementation

Figure 7.1: Software Flow Diagram

Figure 7.2: Host Software Sequence Diagram

Once the initialisation has been completed, the IQS323 will notify the master of events by pulling the RDY line Low. The master can then read the event flags and act accordingly.

7.1.1 Example Host Software Flow

Figure 7.3: Example Host Software Flow

An example flow diagram of the headphone behavior can be seen in figure 7.3. Upon powering on the Bluetooth Low Energy (BLE), the system enters the active mode. If a wear event is detected, the music starts playing with Active Noise Cancellation (ANC) activated. After wearing the headphones, the system continues playing music for at least 5 seconds (due to debounce). If a release event is subsequently detected, the system transitions to a state where the music is paused, and the ANC is deactivated. In the absence of any wear event for a duration of 5 minutes, the system shifts into standby mode and turns off the BLE.

7.1.2 Communication Protocol

For examples of I²C addressing, read, write, force communication requests and other communications related behaviour, please refer to the relevant device's datasheet I²C interface section.

8 Mass Production Testing

This chapter provides information concerning testing during mass production.

8.1 In-circuit Testing (ICT)

PCBA testing should ideally be done with the product assembled to determine the effect of all auxillary functions such as bluetooth, etc. Ideally test should be done in the typical operating environment of the headphones. The testing environment should be free of any users or objects that could interfere with the ATI calibration routine.

Testing of the proximity sensor can be done via the on-board MCU. The following test parameters should be considered:

- > Version information
 - Check device product number
 - Check device major and minor firmware version info
 - Confirm device communication and clear/acknowledge (ACK RESET) flag
- > Application settings
 - Written configuration settings can be read back
 - ATI specific parameters are distinct and updated
 - ATI completion reached on all channels without any ATI error reported
- > Functional testing
 - Procedural exercise of all functionality when sensors are activated (can have a test routine implementation)
 - Induced user activation assessment (signal of known or controlled benchmark for sensitivity and reactivity qualification)
 - Raw signal noise assessment
- > Current consumption
 - Average current measurement over long periods is constant for normal device operation
 - The integration time period should be long enough such that starting or ending the measurement midway through an active cycle/conversion does not have a large effect on the measured average current

Pre-production builds of increasing quantities are a general sound practice used to choose applicable tests, gathering test data and establishing limitations thereof. Statistical means, standard deviations and typical outlier criteria may be used to discover and inspect certain units in detail to institute a basis for known risks or critical design aspects which should be evaluated, addressed and improved upon during the preparation leading towards final or mass production.

Testing should also be done where a unit is only battery powered and isolated from earth, and the case where the unit is earthed (example via USB). This is to determine whether satisfactory performance is achieved with all methods of operation.

8.2 Response vs Current Consumption

There exists a trade-off between the responsiveness of a sensor and the average amount of current being consumed to reach a specific response or sampling rate. End-product or UX design may dictate the specification for responsiveness but this ultimately impacts the overall system current consumption. Current measurement during production testing should allow for typical normal power mode operation as well as slower low-power mode current measurements to ensure acceptable consumption requirements are met and guarantee the stability of a specific mode without irregular/erratic be-

haviour such as unexpected wake-up from low-power modes or excessive high currents (short-circuit assembly issues).

Standard SMT production line practises and guidelines should always be followed with respect to IC device and sub-assembly handling, manufacturing, storage and transport to ensure quality, high yield and reliability.

9 Revision History

Release	Date	Comments
v1.0	2023/10/27	Initial document released

Contact Information

	USA	Asia	South Africa
Physical Address	11940 Jollyville Suite 120-S Austin TX 78759 USA	Room 501A, Block A T-Share International Centre Taoyuan Road, Nanshan District Shenzhen, Guangdong, PRC	1 Bergsig Avenue Paarl 7646 South Africa
Postal Address	11940 Jollyville Suite 120-S Austin TX 78759 USA	Room 501A, Block A T-Share International Centre Taoyuan Road, Nanshan District Shenzhen, Guangdong, PRC	PO Box 3534 Paarl 7620 South Africa
Tel	+1 512 538 1995	+86 755 8303 5294 ext 808	+27 21 863 0033
Email	info@azoteq.com	info@azoteq.com	info@azoteq.com

Visit www.azoteq.com for a list of distributors and worldwide representation.

Patents as listed on www.azoteq.com/patents-trademarks/ may relate to the device or usage of the device.

Azoteq[®], Crystal Driver[®], IQ Switch[®], ProxSense[®], ProxFusion[®], LightSense[™], SwipeSwitch[™], and the ⁽¹⁾/₂ logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an "as is" basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Azoteg disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteg products are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq's total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com.