
Azoteq IQS269A Linux Kernel Driver

 Enables the IQS269A in Android and other

embedded Linux applications

 Interfaces to the Linux input core for direct

communication with the Android EventHub

 Efficient use of existing Linux frameworks simplifies

integration and system bring-up

 Handles all low-level communication (I2C

transactions and RDY/interrupt handling)

 Registers up to 3 input devices with the

Linux kernel

 Keypad for individual sensing channel events

 Slider 0 and 1 UIs

 All events can be assigned a Linux input

event “key code” (KEY_MUTE, etc.)

 Proximity, touch and deep touch events

 Positive or negative delta

 Controls power mode based on system state

 Compile-time control of nearly every register

 All parameters exposed as device tree

properties

 Device tree is a ubiquitous data structure that

describes hardware

 All 8 channels represented as fully

configurable device tree child nodes

 Run-time control of ATI-specific registers

 Mirrored to user space through sysfs

attributes (i.e. R/O or R/W “files”)

 Facilitates production-line calibration of Hall

sensor

Demonstration Platform

Android Development Kit

IQS269A Stamp Module

Power/I2C/GPIO Header

8-Channel Capacitive Keypad/Slider

Ring/Vibrate Touch Key

Generic Touch Slider

 Slider activity reported using

input event codes commonly

used for axial sliders

EV_KEY: touch start (BTN_TOUCH = 0x014A = 1)

EV_ABS: absolute coordinate change (0–255)

EV_KEY: touch stop (BTN_TOUCH = 0x014A = 0)

Magnetic Lid Switch

 Channel 7 events reported

as change in switch state

(EV_SW) instead of key

press/release (EV_KEY) if

Hall UI is enabled

 Some Linux switch codes

(e.g. SW_LID, SW_DOCK)

invoke preset behaviors in

Android (e.g. screen on/off)

 Driver provides means to derive unit-

specific ATI target (NT) for Hall channel

pair during production

 Calibration is performed using shell

scripts executed on host via Android

Debug Bridge over USB

 NT is written to target’s nonvolatile

memory during production and passed

to driver each time target is booted

Production-Line Calibration Overview

IQS269A

Mobile Device

Lid/Cover

Magnet

USB Interface

1. Set compile-time properties in device tree (see iqs269a.yaml)
iqs269a@44 {

 [...]

 azoteq,hall-enable;

 channel@6 { channel@7 {

 reg = <0x6>; reg = <0x7>;

 azoteq,invert-enable; azoteq,invert-enable;

 azoteq,static-enable; azoteq,static-enable;

 azoteq,reseed-disable; azoteq,reseed-disable;

 azoteq,rx-enable = <0>; azoteq,rx-enable = <0>, <6>;

 azoteq,sense-freq = <0x0>; azoteq,sense-freq = <0x0>;

 azoteq,sense-mode = <0xE>; azoteq,sense-mode = <0xE>;

 azoteq,ati-mode = <0x0>; azoteq,ati-mode = <0x3>;

 azoteq,ati-base = <200>; azoteq,ati-base = <200>;

 azoteq,ati-target = <320>; azoteq,ati-target = <320>;

 event-touch {

 linux,code = <SW_LID>;

 };

 }; };

};

2. Override relevant properties in user space
echo 0 > /sys/bus/i2c/devices/1-0044/hall_enable

echo 6 > /sys/bus/i2c/devices/1-0044/ch_number

echo 3 > /sys/bus/i2c/devices/1-0044/ati_mode

echo 7 > /sys/bus/i2c/devices/1-0044/ch_number

echo 3 > /sys/bus/i2c/devices/1-0044/ati_mode

3. Open lid (i.e. remove magnet)

4. Update registers and trigger ATI
echo 1 > /sys/bus/i2c/devices/1-0044/ati_trigger

5. Close lid (i.e. apply magnet)

6. Read counts, ATI base/target and Hall pad bin number
echo 6 > /sys/bus/i2c/devices/1-0044/ch_number

cat /sys/bus/i2c/devices/1-0044/counts

302

echo 7 > /sys/bus/i2c/devices/1-0044/ch_number

cat /sys/bus/i2c/devices/1-0044/counts

342

cat /sys/bus/i2c/devices/1-0044/ati_base

200

cat /sys/bus/i2c/devices/1-0044/ati_target

320

cat /sys/bus/i2c/devices/1-0044/hall_bin

8

7. Ensure neither inverting nor non-inverting counts reach 8192

8. Calculate ia

9. Calculate NT based on desired counts (e.g. nz = 500)

10. Write NT to channels 6 and 7
echo 6 > /sys/bus/i2c/devices/1-0044/ch_number

echo 454 > /sys/bus/i2c/devices/1-0044/ati_target

echo 7 > /sys/bus/i2c/devices/1-0044/ch_number

echo 454 > /sys/bus/i2c/devices/1-0044/ati_target

11. Open lid (i.e. remove magnet)

12. Update registers and trigger ATI
echo 1 > /sys/bus/i2c/devices/1-0044/ati_trigger

13. Close lid (i.e. apply magnet)

14. Read updated counts
echo 6 > /sys/bus/i2c/devices/1-0044/ch_number

cat /sys/bus/i2c/devices/1-0044/counts

414

echo 7 > /sys/bus/i2c/devices/1-0044/ch_number

cat /sys/bus/i2c/devices/1-0044/counts

490

15. Ensure channel 7 (EV_SW reporting) counts are reasonably close to nz

16. Write NT to nonvolatile memory (e.g. persist partition)

17. Restore compile-time properties
echo 1 > /sys/bus/i2c/devices/1-0044/hall_enable

echo 6 > /sys/bus/i2c/devices/1-0044/ch_number

echo 0 > /sys/bus/i2c/devices/1-0044/ati_mode

echo 7 > /sys/bus/i2c/devices/1-0044/ch_number

echo 3 > /sys/bus/i2c/devices/1-0044/ati_mode

18. Open lid (i.e. remove magnet)

19. Update registers and trigger ATI
echo 1 > /sys/bus/i2c/devices/1-0044/ati_trigger

Post-Calibration Boot Sequence

1. Read NT from nonvolatile memory (e.g. persist partition)

2. Write NT to channels 6 and 7 via init.rc
echo 6 > /sys/bus/i2c/devices/1-0044/ch_number

echo $NT > /sys/bus/i2c/devices/1-0044/ati_target

echo 7 > /sys/bus/i2c/devices/1-0044/ch_number

echo $NT > /sys/bus/i2c/devices/1-0044/ati_target

3. Update registers and trigger ATI via init.rc
echo 1 > /sys/bus/i2c/devices/1-0044/ati_trigger

User-Space Control Summary

Name Access Description

ch_number R/W* Channel number selection (0–7)

rx_enable R/W* Sensing pin enable/disable for the selected channel (CRX[7:0])

counts R/O* Filtered counts for the selected channel

hall_bin R/O* Bin number for the Hall pad selected by rx_enable[6] and rx_enable[7] (both must agree)

hall_enable R/W* Hall UI enable/disable

ati_mode R/W* ATI mode for the selected channel (0 = disabled, 1 = semi-partial, 2 = partial, 3 = full)

ati_base R/W* ATI base for the selected channel (75, 100, 150 or 200)

ati_target R/W* ATI target for the selected channel (0–2016)

ati_trigger R/W*
R: non-zero value indicates all registers are up-to-date

W: non-zero value updates all registers and triggers ATI

* Registers are not updated until ati_trigger is written with a non-zero value

LABUNDY.COM

