
 
 

 
 

Application Note: AZD067 
IQS5xx Trackpad Communication Interface 

IQ Switch
®
 - ProxSense

®
 Series 

Description of Master I2C Example Firmware  
for Trackpad Application on IQS5xx 

 

This guide is provided to assist the designer to effortlessly develop firmware that interfaces with the 

trackpad application on the IQS550, IQS525 and IQS512 platforms. The register specific 

information for the IQS5xx can be found in the relating product datasheet documents.  The I2C 

master configures and manages the IQS5xx I2C slave, and gives a good platform from which to 

develop application specific firmware.   

 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 2 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

Contents 

Application Note: AZD067 .......................................................................................................................................... 1 

IQS5xx Trackpad Communication Interface ................................................................................................................ 1 

1 Communication Interface ................................................................................................................................... 3 

1.1 General I
2
C Hints / Suggestions ......................................................................................................................... 3 

1.1.1 Communication Window .............................................................................................................................. 3 
1.1.2 I

2
C- timeout (on IQS5xx) ............................................................................................................................... 3 

1.1.3 I
2
C Pull-up Resistors ...................................................................................................................................... 3 

1.1.4 NRST .............................................................................................................................................................. 3 
1.1.5 RDY ................................................................................................................................................................ 3 
1.1.6 Master Timeout ............................................................................................................................................ 4 

1.2 Communication: ................................................................................................................................................ 4 
1.2.1 IQS5xx Device Address .................................................................................................................................. 4 
1.2.2 Address Byte ................................................................................................................................................. 4 
1.2.3 Writing to the IQS5xx .................................................................................................................................... 4 
1.2.4 Reading from the IQS5xx .............................................................................................................................. 5 

2 Example Implementation ................................................................................................................................... 5 

2.1 Overview............................................................................................................................................................ 5 

2.2 IQS5xx Settings File (IQS5xx_Init.h) ................................................................................................................... 6 

2.3 Miscellaneous Functions ................................................................................................................................... 7 
2.3.1 Main .............................................................................................................................................................. 7 
2.3.2 Init ................................................................................................................................................................. 7 
2.3.3 Comms_init ................................................................................................................................................... 8 

2.4 Lower Level I
2
C Function Descriptions ............................................................................................................... 8 

2.4.1 CommsIQS5xx_send...................................................................................................................................... 9 
2.4.2 CommsIQS5xx_read_ack............................................................................................................................... 9 
2.4.3 CommsIQS5xx_read_nack ............................................................................................................................ 9 
2.4.4 CommsIQS5xx_start .................................................................................................................................... 10 
2.4.5 CommsIQS5xx_repeat_start ....................................................................................................................... 10 
2.4.6 CommsIQS5xx_stop .................................................................................................................................... 11 

2.5 Upper Level I
2
C Function Descriptions ............................................................................................................. 11 

2.5.1 IQS5xx_Settings .......................................................................................................................................... 12 
2.5.2 CommsIQS5xx_Write .................................................................................................................................. 16 
2.5.3 CommsIQS5xx_Read ................................................................................................................................... 16 
2.5.4 CommsIQS5xx_Read_First_Byte ................................................................................................................. 17 
2.5.5 CommsIQS5xx_Read_Next_Cont ................................................................................................................ 17 
2.5.6 CommsIQS5xx_Read_Next_Done ............................................................................................................... 18 
2.5.7 CommsIQS5xx_Initiate_Conversion ............................................................................................................ 18 
2.5.8 IQS5xx_Refresh_Data ................................................................................................................................. 18 
2.5.9 IQS5xx_Process_New_Data ........................................................................................................................ 21 

2.6 Variables .......................................................................................................................................................... 21 

2.7 Constant Declarations ..................................................................................................................................... 21 
2.7.1 IQS5xx.h ...................................................................................................................................................... 21 
2.7.2 IQS5xx_Init .................................................................................................................................................. 22 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 3 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

 

1 Communication Interface 

When implementing the master device firmware, please refer to the IQS5xx Trackpad 
Datasheet for a detailed description of the I

2
C communication, available address-commands 

and registers.   

1.1 General I2C Hints / Suggestions 

1.1.1 Communication Window 

Upon implementing the I
2
C firmware it is important to understand the working of the 

communication window. 

When communicating via I
2
C, the communication window will close when an I

2
C STOP is 

received by the IQS5xx.  The IQS5xx will then pull the RDY line low, marking the end of the 
communication window.  It will now proceed with a new conversion, and also update all data.  
Once this new data is available, another communication window will become available, 
indicated by RDY going HIGH. 

To perform multiple read and write commands within the same communication window, an I
2
C 

REPEATED-START must be used to string them together.   
 

1.1.2 I2C- timeout (on IQS5xx) 

An on-chip timeout is implemented to prevent stuck conditions on the I
2
C bus.  Depending on 

the implementation, a situation could arise where either the master or the slave is waiting for 
an event/condition to occur before proceeding, but due to various reasons it does not, and 
then the communication is stuck.  The reason could be due to factors such as noise, 
interference etc.  To prevent the IQS5xx from permanently waiting in such a state, a 
configurable timeout is implemented.  The counter for this timeout is cleared for every 
successful byte read or write.  If the timeout occurs, the SDA and SCL lines are released by 
the IQS5xx, and the RDY is pulled low, ending the communication window. 
 

1.1.3 I2C Pull-up Resistors 

When implementing I
2
C it is important to remember the pull-up resistors on the data and clock 

lines.  4.7kΩ is recommended, but for lower clock speeds bigger pull-ups will reduce power 
consumption.  
 

1.1.4 NRST 

Suggested implementation is to have the VDD and the pull-up resistors connect to the power 
supply of the device.  The NRST pin should then be used to reset the IQS5xx.  Remember to 
hold the NRST low until master setup has been done, with the relevant SDA and SCL I/O’s 
correctly configured.  
 

1.1.5 RDY 

It is recommended to connect the RDY to an interrupt-on-change input on the master.  This will 
simplify the program flow, by allowing the firmware to only trigger the data retrieval and 
processing when the communication window becomes available, without having to poll the 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 4 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

RDY line.  This becomes even more convenient when configuring the device in EventMode, 
which only triggers a communication window when a selectable event has occurred. 

For simplicity, this example did not have RDY connected to an interrupt I/O.  
 

1.1.6 Master Timeout 

It is recommended to implement a watchdog timer in the I
2
C firmware engine on the master 

side also.  This will prevent the master from being stuck in communications permanently.  If no 
legitimate data transfer is seen for a certain period, then the SDA and SCL lines can be 
released and the communication can be repeated.  This should not occur under normal 
conditions, but makes the system more robust incase of unexpected interference, which could 
render the master and slave out of sync.  
 

1.2 Communication: 

When RDY signals that the communication window is available, the master initiates 
communication and can read/write the applicable data to/from the slave.  Standard I

2
C read 

and write protocol is used, with the standard address replaced by an address-command 
implementation.  An additional/optional RDY line is implemented which allows for optimal data 
transfer with respect to response rate.  
 

1.2.1 IQS5xx Device Address 

The slave device address for the IQS5xx can be found in the relating firmware description.  For 
the purpose of this document the slave address is as shown below: 

R/W 1 1 1 0 1 MSB LSB 

7 bit device address 

0 0 

 

Figure 1.1 Control Byte (device address + r/w) 

1.2.2 Address Byte 

When reading/writing data bytes, the applicable address is initially written to the slave.  Instead 
of having each byte relating to a specific address, an ‘address-command’ type structure is 
implemented.  This means that each byte cannot be individually addressed, but instead blocks 
of data are addressed together under one address-command.  For example, if the proximity 
status bits are required, the proximity status read address-command is configured as the 
‘address’, and all the bytes are read out sequentially under that one address-command.  
 

1.2.3 Writing to the IQS5xx  

The master initiates communication by sending an I
2
C START condition followed by the device 

slave address and WRITE bit (0x74 and 0x00 = 0xE8).  Next the address-command relating to 
the required settings is sent, followed by the data bytes.   

After all required bytes are written (less can also be sent), then a REPEATED-START can be 
sent if more Read/Write operations are required within the communication window, otherwise 
the window can be closed with an I

2
C STOP. 

Example:   



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 5 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

START  ControlByte (0xE8)  Address-Command  Data0  Data  Data  STOP  
 

1.2.4 Reading from the IQS5xx   

The master initiates communication by sending an I
2
C START condition followed by the device 

slave address and WRITE bit (0x74 and 0x00 = 0xE8).  Next the address-command relating to 
the required data to read is written to the slave.  Now to change to READ state, a REPEATED-
START is given, followed by the device slave address and READ bit (0x74 and 0x01 = 0xE9).  
This can then be followed by reading out the number of required bytes.   

After all required bytes are read (less can also be read), then a repeated start can be sent if 
more Read/Write operations are required within the communication window, otherwise the 
window can be closed with an I

2
C STOP. 

Example (reading from a specific address-command): 

START  ControlByte (0xE8)  Address-Command  Repeated START  ControlByte 
(0xE9)  Data0  Data  Data  STOP 

At the start of each communication window, a default address-command relating to XY Data 
Read is loaded.  In most cases this will be the data required, and then setting the address-
command first is not needed.  

Example (reading from default address-command): 

START  ControlByte (0xE9)  XYInfoByte  X-high  X-low Y-high  XY-low  STOP 

Please Note: The default address-command is only reset to the default value at the beginning 
of the communication window.  It is not reset when switching between read and write routines. 

2 Example Implementation 

A minimalist implementation of the IQS5xx is described in this section.  The files required are 
listed here: 

Main.c     includes.h    

UpperLevel.c    IQS5xx.h 

LowerLevel.c     IQS5xx_Init.h 

These files and their functions are also clearly commented, and these together with this 
section will provide good explanation of the example implementation. 

2.1 Overview 

This implementation initiates communication between the master (PIC18F4550) and the 
IQS5xx.  The master sends commands to configure the IQS5xx.  Once the configuration is 
completed, the program enters an infinite loop.  

In each loop cycle:  

 The master waits until the conversion is completed.  This is indicated by the RDY line 
going HIGH, indicating the availability of a communication window with new data 
available. 

 Data is read from IQS5xx (XY Data and Snap Status bytes) 

 The data is processed accordingly. 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 6 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

Start

Startup routine 

of Master

Setup Comms 

with IQ5xx

Configure 

Settings for 

IQS5xx

Wait for 

conversion to 

finish (RDY)

Read IQS5xx

Data

Process data

 

Figure 2.1 Overview 

2.2 IQS5xx Settings File (IQS5xx_Init.h) 

The device is configured according to the data obtained from the IQS5xx_Init.h file.  The 
values can be manually edited in the file, or the file can be created by the PC GUI software.  
This provides an easy method for ensuring good initial settings are selected and correctly 
setup on-chip.   

Please Note:  When connecting the application hardware to the PC via the Azoteq USB Tool, it 
could alter the performance slightly.  For example, if a battery application is being developed, 
connecting to the PC effectively grounds the application which does not represent true 
performance.  However this change is usually very small, and even in this case, the settings 
obtained are good initial values from which to work.  Small modifications can then be made as 
needed. 

It is thus suggested for ease of use, to firstly connect the application hardware to the PC GUI.  
This has a convenient graphical interface to assist in obtaining the desired optimal settings.  
Once the designer is satisfied with the performance, the settings file can be generated.  With 
the optimal settings configured in the GUI, simply click on the Options menu, and select Export 
H File, as shown below.  The respective IQS5xx.Init.h file can now be saved, and used in the 
master firmware project. 

 

Figure 2.2 Export Settings 

 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 7 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

2.3 Miscellaneous Functions 

2.3.1 Main 

The Main function sets up the hardware, including writing all required initialisation data to the 
controller.  After initialisation, the function runs the infinite loop to retrieve data from the IQS5xx 
and to process the data. 

Listing 1. Main 

void main(void) 
{ 
 init();     // Initialise 
  
 while(1)     // endless loop 
 { 
  IQS5xx_Refresh_Data();  // Obtain new data from IQS5xx   
  IQS5xx_Process_New_Data(); // Process the new data 
 } 
} 

2.3.2 Init 

The init function executes commands to setup the system.  The ports and registers of the 
PIC18F4550 are set first.  The setup of the I

2
C is done by calling the Comms_init function. The 

output pin connected to the IQS5xx NRST is set to high to release the device from reset.  It is 
advised to execute all other hardware initialisation routines before initialising the IQS5xx, as 
other hardware may cause environmental conditions for the IQS5xx to change, affecting the 
sensing data.  With the I

2
C communication initialised, commands are sent to the IQS5xx via 

the I
2
C to set up the required parameters on the device. This is done by calling the 

IQS5xx_Settings function.  

Listing 2. Init 

void init(void) 
{ 
 ADCON1 = 0x0F;    //PORTA all digital operation  
 LATA = 0x02; 
 TRISA = 0x02;    //RA3 is power output for IQS5xx, RA1 (RDY) input. 
 TRISD = 0x00;     //configure PORTD for output 
 LATD = 0x0F;    //LEDS off 
 
 LATB = 0xFF; 
 TRISB = 0xFF;    //PORTB for input 
 INTCON2bits.RBPU = 0;   //For PIC18LF4550-Eval-Rev4A hardware with 74HC573 latch 
 TRISCbits.TRISC0 = 0; 
 LATCbits.LATC0  = 1;   //un-latch 74HC573 to make OUTD follows LATD 
 TRISCbits.TRISC1 = 0;   //enable the latch 
 LATCbits.LATC1 = 0; 
 
 Comms_init();  
 
 LATB = 0xFF; 
 LATD = 0x0F; 
 
 button_mem = PORTB; 
 InitGraph(); 
 
// Place other functions responsible for hardware initialisation here.  
 IQS5xx_Settings(); 
} 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 8 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

Start

PORT settings 

of PIC18F4550

Call LCD Init 

function

IQS5xx 

NRST High

Call IQS5xx 

Settings 

function

Start

Call I2C Init 

function

 

Figure 2.3 Init Function 

2.3.3 Comms_init 

The Comms_Init function sets the registers in the PIC18F4550 to configure the device for the 
I
2
C communication. 

For this example the IQS550 was powered by an I/O on the PIC, which was also switched on 
here. 

Listing 3. Comms Init 

void Comms_init()     //Initiates i2c module on PIC18F4550 
{ 

SSPADD = 0x02;    // settings for I2C frequency - 416kHz 
 SSPSTAT |= 0x80;    // slew rate control for high speed (400kHz) 
 // SSPADD = 0x08;    // settings for I2C frequency - 138kHz 
   
 TRISB = TRISB | 0x03;   //set TRISB<0> Make I2c SDA and SCL inputs 
  
 PIR1bits.SSPIF = 0; 
 SSPCON1 = 0x28;    //enables i2c, set to master  
  
 LATA = LATA | 0x08;   //switch on the IQS5xx 
} 

2.4 Lower Level I2C Function Descriptions 

The lower level functions will need to be modified by the designer when implementing the 
example code on different microcontrollers.  If the functions are created with identical 
functionality, then the Upper Level functions can be reused exactly as they are. 

The lower level functions address the PIC18F4550 specific registers and the functions are 
found in the file LowerLevel.c.  
 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 9 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

2.4.1 CommsIQS5xx_send 

The CommsIQS5xx_send function is a basic function called by other I
2
C communication 

functions.  The data transmission is initiated by writing the data to the PIC data buffer.  The 
transmission complete flag is then monitored, and once the byte is successfully transferred, 
the flag is cleared.  Now the device waits for the ACK from the Slave, and the transmission is 
complete. 

Listing 4. Data Send 

void CommsIQS5xx_send(unsigned char send_data) 
{ 
 SSPBUF = send_data;   // write transmit byte to buffer 
 while (PIR1bits.SSPIF == 0)   // wait for transmit complete flag 
 {} 
 PIR1bits.SSPIF = 0;    //clear flag  
 
 while (SSPCON2bits.ACKSTAT == 1)  //verify IQS5xx acknowledge 
 {} 
} 

2.4.2 CommsIQS5xx_read_ack 

A read is performed here followed by an ACK.  This means that it is not the last byte in the 
read process.  

Listing 5. Read and Acknowledge 

unsigned char CommsIQS5xx_read_ack(void) 
{ 
 unsigned char temp; 
  
 SSPCON2bits.RCEN = 1;   // enable master receiver mode 
 while (PIR1bits.SSPIF == 0)   // wait for byte received flag 
 {} 
 PIR1bits.SSPIF = 0;    //clear flag 
 
 while (SSPSTATbits.BF == 0)   // wait for buffer full flag (receive complete)    
 {} 
 temp = SSPBUF;    // store received byte 
 
 SSPCON2bits.ACKDT = 0;   // enable ACK    
 SSPCON2bits.ACKEN = 1;   // execute ACK sequence 
 
 while (PIR1bits.SSPIF == 0)   // Wait for ACK transmission complete 
 {} 
 PIR1bits.SSPIF = 0;    //clear flag 
  
 while (SSPCON2bits.ACKEN == 1)   //verify acknowledge sequence is complete 
 {} 
 
 return temp; 
} 

2.4.3 CommsIQS5xx_read_nack 

A read is performed here followed by a NACK.  This means that this byte is the last one in the 
current read process. 

Listing 6. Read and Not-Acknowledge 

unsigned char CommsIQS5xx_read_nack(void) 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 10 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

{ 
 unsigned char temp; 
  
 SSPCON2bits.RCEN = 1;   // enable master receiver mode 
 while (PIR1bits.SSPIF == 0)               // wait for byte received flag 
 {}                                       
 PIR1bits.SSPIF = 0;                //clear flag 
                                             
 while (SSPSTATbits.BF == 0)               // wait for buffer full flag (receive complete 
 {}                                       
 temp = SSPBUF;                            // store received byte 
                                             
 SSPCON2bits.ACKDT = 1;                    // enable NACK    
 SSPCON2bits.ACKEN = 1;                    // execute NACK sequence 
                                             
 while (PIR1bits.SSPIF == 0)               // Wait for NACK transmission complete 
 {}                                       
 PIR1bits.SSPIF = 0;                    //clear flag 
                                          
 while (SSPCON2bits.ACKEN == 1)   //verify acknowledge sequence is complete 
 {} 
 
 return temp; 
} 

2.4.4 CommsIQS5xx_start 

Firstly this function confirms that the IQS5xx communication window is active, by ensuring that 
the RDY line is HIGH. 

Once this is confirmed, an I
2
C START condition is generated.   This function is the first call at 

the start of a communication window.  If numerous reads and writes are implemented, then the 
CommsIQS5xx_repeat_start function can be used. 

Listing 7. I2C Start 

void CommsIQS5xx_start(void) 
{ 
 while (PORTAbits.RA1 == 0)   //wait for ready 
 {} 
 
 SSPCON2bits.SEN = 1;   //start condition 
 
 while (PIR1bits.SSPIF == 0)   //wait for start condition to be generated 
 {} 
 PIR1bits.SSPIF = 0;    //clear flag 
 
 while (SSPCON2bits.SEN == 1)  // verify start is complete 
 {} 
} 

2.4.5 CommsIQS5xx_repeat_start 

This function generates an I
2
C START condition. This is used to string together numerous 

read and writes within the same communication window.  A REPEATED-START is exactly the 
same as a START, except that it is done without being preceded by a STOP.  Therefore the 
same communication window is kept and different address-commands can be read/written. 

Listing 8. I2C Repeated Start 

void CommsIQS5xx_repeat_start(void) 
{ 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 11 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

 SSPCON2bits.RSEN = 1;   //start condition 
 
 while (PIR1bits.SSPIF == 0)   //wait for start condition to be generated 
 {} 
 PIR1bits.SSPIF = 0;    //clear flag 
 
 while (SSPCON2bits.RSEN == 1)  // verify start is complete 
 {} 
} 

2.4.6 CommsIQS5xx_stop 

This function generates an I
2
C STOP condition.  This ends the communication window, and 

the IQS5xx will then pull RDY low, and resume with new sensing and data processing. 

Listing 9. I2C Stop 

void CommsIQS5xx_stop(void) 
{ 
 SSPCON2bits.PEN = 1;   //stop condition 
 
 while (PIR1bits.SSPIF == 0)   //wait for stop condition to be generated 
 {} 
 PIR1bits.SSPIF = 0;    //clear flag 
 
 while (SSPCON2bits.PEN == 1)  // verify stop is complete 
 {} 
} 

2.5 Upper Level I2C Function Descriptions 

The upper level functions are found in the file UpperLevel.c.  The lower level functions are 
used by these to implement the required I

2
C data protocol.  They are designed to be strung 

together to allow the developer full control over the termination of the communication window, 
and the required data transfers.  The building blocks provided have limitations in terms of the 
order in which they can be implemented.  What this means is that a data WRITE cannot be 
called without firstly calling an I

2
C START for example, as is the logical order determined by 

the I
2
C protocol.  To illustrate this, a flow diagram shows the standard functions implemented 

with their possible implementations. 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 12 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

New Communication 

Window

IQS5xx_start()

Communication 

window closed

IQS5xx_Read() IQS5xx_Write()

IQS5xx_stop()

CommsIQS5xx_Read_First_Byte()

CommsIQS5xx_Read_Next_Cont()

CommsIQS5xx_Read_Next_Done()

CommsIQS5xx_Initiate_Conversion()
IQS5xx_repeat_start()

 

Figure 2.4 Implemented Functions Flow Diagram 

2.5.1 IQS5xx_Settings 

The IQS5xx_Settings function sends the values to the IQS5xx to set the registers necessary 
for the desired functionality of the IQS5xx.  This function uses the data from the IQS5xx_Init.h 
file and configures the device accordingly. 

This function must make provision that ANY of the settings can be altered from their default 
values, and thus all settings are configured.  However if default values are used, the specific 
settings don’t need to be sent.  The steps taken to setup the device are summarised here: 

1- The version information is read, and must match that provided in the IQS5xx_Init.h file.  
This assists in confirming that communication is successfully implemented, and also 
that the correct device is being used. 

2- The reset is acknowledged, which will clear the SHOW_RESET bit in XYInfoByte. 

3- Channel setup is performed 

4- Thresholds required are setup 

5- Normal Mode ATI is configured, and the Auto-ATI algorithm is executed 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 13 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

6- Filter settings are configured 

7- Hardware parameters are configured (usually not changed) 

8- Active Channels are configured (usually not changed) 

9- Debounce values are set 

10- ProxMode ATI is configured, and the Auto-ATI algorithm is executed 

11- Finally, the system operational settings (low-power, sleep, EventMode, system mode 
etc) are configured as required.  These settings are done last, since you want to 
complete all the settings before changing the way the cycles and communication work. 

Now the device is correctly setup and operating according to the supplied parameters. 

Listing 10. IQS5xx Setting 

void IQS5xx_Settings(void) 
{ 
 unsigned char data_buffer[30]; 
 
 CommsIQS5xx_start();    // check comms by confirming Version information  
 CommsIQS5xx_Read(VERSION_INFO, &data_buffer, 3);  
 CommsIQS5xx_stop(); 
  
 if ( (((unsigned int)data_buffer[0]<<8 + (unsigned int)data_buffer[1]) != PRODUCT_NUMBER) ||  
   (((unsigned int)data_buffer[2]<<8 + (unsigned int)data_buffer[3]) != PROJECT_NUMBER) ||  
   (data_buffer[4] != VERSION_NUMBER) )       // These constants must be updated in the IQS5xx_Init.h file 
 { 
  // Handle the comms error here! 
 } 
  
// ACKNOWLEDGE THE RESET INDICATION FLAG 
 data_buffer[0] = ACK_RESET;  // Set ACK_RESET flag, which clears SHOW_RESET in XYInfoByte 
 CommsIQS5xx_start(); 
 CommsIQS5xx_Write(CONTROL_SETTINGS, &data_buffer[0], 1);  
 CommsIQS5xx_stop();   // Now the bit is clear, and if ever SHOW_RESET is set..  

    // ..an unexpected reset can be handled  
 
// -----------------------------------------------------  
// FIRSTLY SETUP THE CHANNELS USED: 
  
 // ChannelSetup Data: 
 data_buffer[0] = TOTALRXS_VAL;   // TotalRx 
 data_buffer[1] = TOTALTXS_VAL;   // TotalTx 
 data_buffer[2] = TRACKPADRXS_VAL;   // TrackPadRx 
 data_buffer[3] = TRACKPADTXS_VAL;   // TrackPadTx 
 data_buffer[4] = PMSETUP0_VAL;   // PMSetup register 
 data_buffer[5] = TXHIGH_VAL;         
 data_buffer[6] = TXLOW_VAL;  // Which Tx's are used for the ProxMode channel (projected only) 
  
 CommsIQS5xx_start();        
 CommsIQS5xx_Write(CHANNEL_SETUP, &data_buffer[0], 7); 
 CommsIQS5xx_stop(); 
 
// -----------------------------------------------------  
// CONFIGURE THE THRESHOLDS:  
 
 // Threshold settings data 
 data_buffer[0] = PROXTHRESHOLD_VAL;  // Prox Threshold 
 data_buffer[1] = TOUCHMULTIPLIER_VAL;  // Touch Multiplier 
 data_buffer[2] = TOUCHSHIFTER_VAL;   // Touch Shifter 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 14 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

 data_buffer[3] = PMPROXTHRESHOLD_VAL;  // PM Prox Threshold 
 data_buffer[4] = (unsigned char)(SNAPTHRESHOLD_VAL>>8); // Snap threshold 
 data_buffer[5] = (unsigned char)SNAPTHRESHOLD_VAL; // Snap threshold 
 data_buffer[6] = PROXTHRESHOLD2_VAL;  // Non-trackpad channels prox threshold 
 data_buffer[7] = TOUCHMULTIPLIER2_VAL;  // Non-trackpad channels Touch Multiplier 
 data_buffer[8] = TOUCHSHIFTER2_VAL;  // Non-trackpad channels Touch Shifter 
  
 CommsIQS5xx_start();        
 CommsIQS5xx_Write(THRESHOLD_SETTINGS, &data_buffer[0], 9);  // send thresholds 
 CommsIQS5xx_stop(); 
  
// -----------------------------------------------------  
// SETUP THE ATI PARAMETERS FOR NORMAL MODE, AND EXECUTE AUTO-ATI ALGORITHM; 
  
 // ATI Settings Data: 
 data_buffer[0] = (unsigned char)(ATITARGET_VAL>>8); 
 data_buffer[1] = (unsigned char)ATITARGET_VAL; // ATI Target 
 data_buffer[2] = ATIC_VAL;    // ATI C  
 data_buffer[3] = (unsigned char)(ATITARGET2_VAL>>8);       
 data_buffer[4] = (unsigned char)ATITARGET2_VAL; // Non-trackpad channels ATI Target 
 data_buffer[5] = ATIC2_VAL;    // Non-trackpad channels ATI C  
  
 CommsIQS5xx_start(); 
 CommsIQS5xx_Write(ATI_SETTINGS, &data_buffer[0], 6); // Write the ATI Parameters 
 data_buffer[0] = AUTO_ATI;     // Set Auto_ATI, with Mode set to Normal Mode. 
 CommsIQS5xx_repeat_start(); 
 CommsIQS5xx_Write(CONTROL_SETTINGS, &data_buffer[0], 1);  
 CommsIQS5xx_stop();    // Now IQS5xx will permform the Auto-ATI algorithm 
  
// -----------------------------------------------------  
// SETUP THE FILTER PARAMETERS; 
 
 // Filter Settings Data: 
 data_buffer[0] = FILTERSETTINGS0_VAL;  // Numerous filter settings 
 data_buffer[1] = TOUCHDAMPING_VAL;  // XY touch point filtering parameter 
 data_buffer[2] = HOVERDAMPING_VAL;  // XY hover point filtering parameter 
 data_buffer[3] = PMCOUNTDAMPING_VAL;        // ProxMode count value filter parameter (full-speed) 
 data_buffer[4] = LPPMCOUNTDAMPING_VAL;  // ProxMode count value filter parameter (Low Power) 
 data_buffer[5] = NMCOUNTDAMPING_VAL;  // Normal Mode count value filter parameter 
  
 CommsIQS5xx_start();        
 CommsIQS5xx_Write(FILTER_SETTINGS, &data_buffer[0], 6); 
 CommsIQS5xx_stop(); 
 
// -----------------------------------------------------  
// SETUP THE TIMING PARAMETERS; 
 
 // Timing Settings Data: 
 data_buffer[0] = RESEEDTIME_VAL;   // LTA reseed timer 
 data_buffer[1] = COMMSTIMEOUT_VAL;  // Inactive i2c timeout value 
 data_buffer[2] = MODETIME_VAL;   // Mode timer value (Switching between modes time) 
 data_buffer[3] = LPTIME_VAL;   // Low power time added in low-power state 
 data_buffer[4] = SLEEPTIME_VAL;   // Sleep time permanently added 
  
 CommsIQS5xx_start();        
 CommsIQS5xx_Write(TIMING_SETTINGS, &data_buffer[0], 5); 
 CommsIQS5xx_stop(); 
   
// -----------------------------------------------------  
// SETUP THE HARDWARE PARAMETERS; 
 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 15 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

 // Hardware Config Settings Data: 
 data_buffer[0] = PROXSETTINGS0_VAL;      
 data_buffer[1] = PROXSETTINGS1_VAL;      
 data_buffer[2] = PROXSETTINGS2_VAL;      
 data_buffer[3] = PROXSETTINGS3_VAL;      
  
 CommsIQS5xx_start();        
 CommsIQS5xx_Write(HW_CONFIG_SETTINGS, &data_buffer[0], 4); 
 CommsIQS5xx_stop(); 
  
// -----------------------------------------------------  
// SETUP THE ACTIVE CHANNELS 
 
 // Active Channels Data: 
 data_buffer[0] = (unsigned char)(ACTIVECHANNELS0_VAL>>8); 
 data_buffer[1] = (unsigned char)ACTIVECHANNELS0_VAL; 
 data_buffer[2] = (unsigned char)(ACTIVECHANNELS1_VAL>>8); 
 data_buffer[3] = (unsigned char)ACTIVECHANNELS1_VAL; 
 data_buffer[4] = (unsigned char)(ACTIVECHANNELS2_VAL>>8); 
 data_buffer[5] = (unsigned char)ACTIVECHANNELS2_VAL; 
 data_buffer[6] = (unsigned char)(ACTIVECHANNELS3_VAL>>8); 
 data_buffer[7] = (unsigned char)ACTIVECHANNELS3_VAL; 
 data_buffer[8] = (unsigned char)(ACTIVECHANNELS4_VAL>>8); 
 data_buffer[9] = (unsigned char)ACTIVECHANNELS4_VAL; 
 data_buffer[10] = (unsigned char)(ACTIVECHANNELS5_VAL>>8); 
 data_buffer[11] = (unsigned char)ACTIVECHANNELS5_VAL; 
 data_buffer[12] = (unsigned char)(ACTIVECHANNELS6_VAL>>8); 
 data_buffer[13] = (unsigned char)ACTIVECHANNELS6_VAL; 
 data_buffer[14] = (unsigned char)(ACTIVECHANNELS7_VAL>>8); 
 data_buffer[15] = (unsigned char)ACTIVECHANNELS7_VAL; 
 data_buffer[16] = (unsigned char)(ACTIVECHANNELS8_VAL>>8); 
 data_buffer[17] = (unsigned char)ACTIVECHANNELS8_VAL; 
 data_buffer[18] = (unsigned char)(ACTIVECHANNELS9_VAL>>8); 
 data_buffer[19] = (unsigned char)ACTIVECHANNELS9_VAL; 
 data_buffer[20] = (unsigned char)(ACTIVECHANNELS10_VAL>>8); 
 data_buffer[21] = (unsigned char)ACTIVECHANNELS10_VAL; 
 data_buffer[22] = (unsigned char)(ACTIVECHANNELS11_VAL>>8); 
 data_buffer[23] = (unsigned char)ACTIVECHANNELS11_VAL; 
 data_buffer[24] = (unsigned char)(ACTIVECHANNELS12_VAL>>8); 
 data_buffer[25] = (unsigned char)ACTIVECHANNELS12_VAL; 
 data_buffer[26] = (unsigned char)(ACTIVECHANNELS13_VAL>>8); 
 data_buffer[27] = (unsigned char)ACTIVECHANNELS13_VAL; 
 data_buffer[28] = (unsigned char)(ACTIVECHANNELS14_VAL>>8); 
 data_buffer[29] = (unsigned char)ACTIVECHANNELS14_VAL;             
  
 CommsIQS5xx_start();        
 CommsIQS5xx_Write(ACTIVE_CHANNELS, &data_buffer[0], 30); 
 CommsIQS5xx_stop(); 
  
// -----------------------------------------------------  
// SETUP THE DEBOUNCE SETTINGS; 
 
 // DebounceSettings Data: 
 data_buffer[0] = PROXDB_VAL;   // Prox Debounce values    
 data_buffer[1] = TOUCHSNAPDB_VAL;   // Touch and Snap debounce values   
  
  
 CommsIQS5xx_start();        
 CommsIQS5xx_Write(DB_SETTINGS, &data_buffer[0], 2); 
 CommsIQS5xx_stop();  
  



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 16 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

// -----------------------------------------------------  
// SETUP THE ATI PARAMETERS FOR PROX MODE, AND EXECUTE AUTO-ATI ALGORITHM 
  
 // First change the mode to ProxMode: 
 data_buffer[0] = MODE_SELECT;    // Set Mode bit to ProxMode 
 CommsIQS5xx_start(); 
 CommsIQS5xx_Write(CONTROL_SETTINGS, &data_buffer[0], 1);  
 CommsIQS5xx_stop();     // now next cycle will be in ProxMode 
  
 // ProxMode ATI Settings Data: 
 data_buffer[0] = (unsigned char)(PMATITARGET_VAL>>8); 
 data_buffer[1] = (unsigned char)PMATITARGET_VAL;  // PM ATI Target 
 data_buffer[2] = PMATIC_VAL;    // PM ATI C 
  
 CommsIQS5xx_start(); 
 CommsIQS5xx_Write(PM_ATI_SETTINGS, &data_buffer[0], 3);  // Write the ATI Parameters 
 data_buffer[0] = MODE_SELECT | AUTO_ATI;   // Keep ProxMode selected, and enable auto-ati 
 CommsIQS5xx_repeat_start(); 
 CommsIQS5xx_Write(CONTROL_SETTINGS, &data_buffer[0], 1);  
 CommsIQS5xx_stop();     // go and perform PM Auto-ATI Routine 
 
// -----------------------------------------------------  
// NOW FINALLY SETUP THE LOW-POWER, SLEEP, SYSTEM MODE AND EVENT SETTINGS  
 
 // Control Settings Data: 
 data_buffer[0] = CONTROLSETTINGS0_VAL;      
 data_buffer[1] = CONTROLSETTINGS1_VAL;      
 CommsIQS5xx_start(); 
 CommsIQS5xx_Write(CONTROL_SETTINGS, &data_buffer[0], 2);  
 CommsIQS5xx_stop(); 
  
// ---- Setup Complete ------- 
} 

2.5.2 CommsIQS5xx_Write 

The slave device address and the WRITE bit are sent to the IQS5xx.  This is followed by the 
specific address-command.  After this, the amount of bytes specified to write, are sequentially 
written.   

As can be seen from Figure 2.4, this function must be preceded with a START or REPEATED-
START. 

It must also be followed by a STOP or REPEATED-START. 

Listing 11. Write 

void CommsIQS5xx_Write(unsigned char write_addr, unsigned char *data, unsigned char NoOfBytes) 
{ 
 unsigned char i; 
 
 CommsIQS5xx_send((IQS5xx_ADDR << 1) + 0x00);  // device address + write   
 CommsIQS5xx_send(write_addr);    // IQS5xx address-command 
 for (i = 0 ; i < NoOfBytes ; i++)  
  CommsIQS5xx_send(data[i]); 
} 

2.5.3 CommsIQS5xx_Read 

The slave device address and the WRITE bit are sent to the IQS5xx.  This is because the 
address-command must first be written to the device, before the data relating to that address-
command can be read.  This is followed by the specific address command.  After this a 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 17 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

REPEATED-START is done, followed by the slave device address with a READ bit.  Now the 
amount of bytes required are sequentially read.   

This function must be preceded with a START or REPEATED-START. 

It must also be followed by a STOP or REPEATED-START. 

Listing 12. Read 

void CommsIQS5xx_Read(unsigned char read_addr, unsigned char *data, unsigned char NoOfBytes) 
{ 
 unsigned char i; 
 
 CommsIQS5xx_send((IQS5xx_ADDR << 1) + 0x00);  // device address + write 
 CommsIQS5xx_send(read_addr);    // IQS5xx address-command 
 CommsIQS5xx_repeat_start(); 
 CommsIQS5xx_send((IQS5xx_ADDR << 1) + 0x01);  // device address + read 
  
 if (NoOfBytes > 1) 
 { 
  for (i = 0; i < NoOfBytes - 1; i++) 
   data[i] = CommsIQS5xx_read_ack();  // all bytes except last must be followed by an ACK 
 } 
  
 data[NoOfBytes-1] = CommsIQS5xx_read_nack();  // last byte read must be followed by a NACK 
} 

2.5.4 CommsIQS5xx_Read_First_Byte 

If the amount of bytes to read are unknown before starting to read (such as first reading the 
XYInfoByte and then deciding how many XY points are available), then the read function can 
be broken up into the functions: CommsIQS5xx_Read_First_Byte, 
CommsIQS5xx_Read_Next_Cont and CommsIQS5xx_Read_Next_Done. 

Here the device addressing and address-command setup is performed, similar to the 
CommsIQS5xx_Read function. However only one byte is returned and an ACK is sent to the 
slave, which indicates that this is not the last read of the sequence. 

This function must be preceded by a START or REPEATED-START. 

It must be followed by a CommsIQS5xx_Read_Next_Cont or 
CommsIQS5xx_Read_Next_Done function. 

Listing 13. Read First Byte 

unsigned char CommsIQS5xx_Read_First_Byte(unsigned char start_addr) 
{ 
 CommsIQS5xx_send((IQS5xx_ADDR << 1) + 0x00); 
 CommsIQS5xx_send(start_addr); 
 CommsIQS5xx_repeat_start(); 
 CommsIQS5xx_send((IQS5xx_ADDR << 1) + 0x01); 
 return CommsIQS5xx_read_ack(); 
} 

2.5.5 CommsIQS5xx_Read_Next_Cont 

A next byte is simply read from the slave, and another ACK is sent, again indicating that this is 
not the last byte to read in the sequence.   

This function must be preceded by a CommsIQS5xx_Read_First_Byte or 
CommsIQS5xx_Read_Next_Cont. 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 18 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

It must be followed by a CommsIQS5xx_Read_Next_Cont or 
CommsIQS5xx_Read_Next_Done function. 

Listing 14. Read Next Not Last Byte 

unsigned char CommsIQS5xx_Read_Next_Cont(void) 
{ 
 return CommsIQS5xx_read_ack(); 
} 

2.5.6 CommsIQS5xx_Read_Next_Done 

A final byte is read from the slave, and this is indicated by sending the appropriate NACK to 
the slave, indicating the read sequence is complete. 

This function must be preceded by a CommsIQS5xx_Read_First_Byte or 
CommsIQS5xx_Read_Next_Cont. 

It must be followed by a STOP or REPEATED-START. 

Listing 15. Read Last Byte 

unsigned char CommsIQS5xx_Read_Next_Done(void) 
{ 
 return CommsIQS5xx_read_nack(); 
} 

2.5.7 CommsIQS5xx_Initiate_Conversion 

This function is simply an example of how to end a communication session quickly without any 
data being required from that communication window.  There is an on-chip I

2
C timeout 

implemented, but if the communication window must be quickly skipped without waiting for that 
timeout to occur, it can be terminated with this function, which simply gives a START, 
addresses the IQS5xx, and then gives a STOP. 

Listing 16. Initiate a Conversion 

void CommsIQS5xx_Initiate_Conversion(void) 
{ 
 CommsIQS5xx_start(); 
 CommsIQS5xx_send((IQS5xx_ADDR << 1) + 0x00); 
 CommsIQS5xx_stop(); 
} 

2.5.8 IQS5xx_Refresh_Data 

This section describes the section labeled ‘Read IQS5xx Data’ from the diagram in Figure 2.1.  
As mentioned this is simply an example, and any data can be read as required by the 
application. 

The master reads the first byte of the XY Data (address-command 0x01), namely the 
XYInfoByte. 

The SHOW_RESET bit is then monitored to flag any unexpected reset condition, which will 
then need to trigger a repeat of the IQS5xx setup procedure. 

Depending on the number of active XY points (NO_OF_FINGERS in XYInfoByte), the relative 
amount of ID, X, Y and Touch Strength data is then read from the IQS5xx. 

This example then assumes that the Snap functionality is also implemented.  If the 
SNAP_OUTPUT bit indicates that there is an active snap output, then it proceeds to read 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 19 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

these additional status bytes.  This is done by using a REPEAT-START to string together the 
multiple transmissions within the same communication window 

For this example no further data is required, and the communication window is closed (to allow 
the IQS5xx to return to get new data) by sending an I

2
C STOP. 

The following flow diagram illustrates an example of a data retrieving section: 

Read SNAP 

status bits

Read XYInfo Byte 

from IQS5xx

Any active 

XY points?

Read out

XY point

data

Yes

No

Did IQS5xx 

reset?

No

End Comms 

Window 

(I
2
C STOP)

Start

Handle Reset

(Redo 

IQS5xx_Settings())

Yes

Return

Return

Any active 

Snap outputs?

Yes
No

 

Figure 2.5 Data Retrieval 

Listing 17. Refresh Data 

void IQS5xx_Refresh_Data(void) 
{ 
 unsigned char data_buffer[37], i, j; 
 
 // Read the XY data, but only read as many XY co-ordinates as shown in the XYInfoByte: 
 i = 0; 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 20 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

  
 CommsIQS5xx_start(); 
 data_buffer[i++] = CommsIQS5xx_Read_First_Byte(XY_DATA); // Read first byte (XYInfo)  
  
 //process XYInfoBYte data: 
 if ((XYInfoByte & SHOW_RESET) != 0)    // check for an unexpected reset. 
 { 
  data_buffer[i] = CommsIQS5xx_Read_Next_Done(); // end the read in progress 
  CommsIQS5xx_stop(); 
  // IQS5xx must be configured with application specific settings, since after reset all will return to default 
  // ....... add code here ....... 
 } 
  
 XYInfoByte = data_buffer[0]; 
 NoOfFingers = XYInfoByte & 0x0F; 
  
 if (NoOfFingers > 0) 
 { 
  for (j = 0; j < ((NoOfFingers*7)-1); j++) 
  { 
   data_buffer[i++] = CommsIQS5xx_Read_Next_Cont(); 
  } 
  data_buffer[i++] = CommsIQS5xx_Read_Next_Done(); // last read must have a NACK 
 } 
 else 
  data_buffer[i] = CommsIQS5xx_Read_Next_Done(); // MUST read another because must..  
        // ..know about NACK beforehand. 
  
// sort the received XY data in structure  
 for (i = 0; i < NoOfFingers; i++) 
 { 
  IQS5xx[i].ID = data_buffer[(i*7)+1]; 
       
  IQS5xx[i].Xpos = (int)(data_buffer[(i*7)+2])<<8; 
  IQS5xx[i].Xpos |= data_buffer[(i*7)+3]; 
       
  IQS5xx[i].Ypos = (int)(data_buffer[(i*7)+4])<<8; 
  IQS5xx[i].Ypos |= data_buffer[(i*7)+5]; 
       
  IQS5xx[i].TouchStrength = (int)(data_buffer[(i*7)+6])<<8; 
  IQS5xx[i].TouchStrength |= data_buffer[(i*7)+7]; 
 } 
 
 if ((XYInfoByte & SNAP_OUTPUT) != 0)    // if there are active snap outputs 
 { 
  CommsIQS5xx_repeat_start(); 
  CommsIQS5xx_Read(SNAP_STATUS, &data_buffer[0], (TOTALTXS_VAL<<1)); // 2 bytes per Tx for snap status 
   
  // sort the received SNAP data 
  for (i = 0; i < TOTALTXS_VAL; i++) 
   SnapStatus[i] = (((unsigned int)data_buffer[i<<1])<<8) + ((unsigned int)data_buffer[(i<<1) + 1]);  
    // add the upper and lower bytes to get the full word 
 } 
 else 
 { 
  for (i = 0; i < TOTALTXS_VAL; i++) 
   SnapStatus[i] = 0x0000;    // no snaps, so set registers all to zero 
 } 
 
 CommsIQS5xx_stop(); 
} 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 21 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

2.5.9  IQS5xx_Process_New_Data 

This function is not provided, since it is dependent on the required application how the data is 
to be utilised. 

2.6 Variables 

Some of the variables used in the firmware example are listed here. 

Listing 18. Useful Variables 

typedef struct { 
 unsigned char  ID; 
 unsigned int  Xpos; 
 unsigned int  Ypos; 
 unsigned int TouchStrength; 
} IQS5xx_TypeDef;  
 
 unsigned char NoOfFingers; 
 unsigned char XYInfoByte; 
 unsigned char prevXYInfoByte; 
  
 IQS5xx_TypeDef IQS5xx[5]; 
 unsigned int SnapStatus[TOTALTXS_VAL<<1]; 

2.7 Constant Declarations 

2.7.1 IQS5xx.h 

Some device constants are provided in the IQS5xx.h header file.  The I
2
C device slave 

address used in the functions is defined here.  The address-commands implemented are 
defined.  Bit definitions for certain bytes are also defined below this, although not regularly 
used in the example firmware they can be used for application specific firmware. 

Listing 19. Constants declared in IQS5xx.h 

// i2c slave device address 
#define IQS5xx_ADDR 0x74 
 
// Definitions of Address-commands implemented on IQS5xx 
#define VERSION_INFO  0x00  // Read  
#define XY_DATA   0x01  // Read 
#define PROX_STATUS  0x02  // Read  
#define TOUCH_STATUS  0x03  // Read   
#define COUNT_VALUES  0x04  // Read  
#define LTA_VALUES  0x05  // Read  
#define ATI_COMP  0x06  // Read / Write 
#define PORT_CONTROL  0x07  // Read / Write 
#define SNAP_STATUS  0x08  // Read 
          
#define CONTROL_SETTINGS 0x10  // Read / Write 
#define THRESHOLD_SETTINGS 0x11  // Read / Write   
#define ATI_SETTINGS  0x12  // Read / Write 
#define FILTER_SETTINGS  0x13  // Read / Write  
#define TIMING_SETTINGS  0x14  // Read / Write 
#define CHANNEL_SETUP  0x15  // Read / Write 
#define HW_CONFIG_SETTINGS 0x16  // Read / Write 
#define ACTIVE_CHANNELS  0x17  // Read / Write 
#define DB_SETTINGS  0x18  // Read / Write 
          
#define PM_PROX_STATUS  0x20  // Read   
#define PM_COUNT_VALUES 0x21  // Read  



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 22 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

#define PM_LTA_VALUES  0x22  // Read  
#define PM_ATI_COMP  0x23  // Read / Write 
#define PM_ATI_SETTINGS  0x24  // Read / Write 
 
// BIT DEFINITIONS FOR IQS5xx 
// XYInfoByte0 
#define NO_OF_FINGERS0  0x01    // Indicates how many co-ordinates are available  
#define NO_OF_FINGERS1  0x02    // Indicates how many co-ordinates are available  
#define NO_OF_FINGERS2  0x04    // Indicates how many co-ordinates are available  
#define SNAP_OUTPUT  0x08    // 0 = no snap outputs / 1 = at least one snap output   
#define LP_STATUS  0x10    // 0 = Charging full-speed  /  1 = Charging in LP duty cycle 
#define NOISE_STATUS  0x20    // 0 = No noise  /  1 = Noise affected data 
#define MODE_INDICATOR  0x40    // 0 = Normal Charging  /  1 = ProxMode charging 
#define SHOW_RESET  0x80    // Indicates reset has occurrd 
           
// Bit definitions - ControlSettings0                                     
#define EVENT_MODE  0x01    // 0= no event mode / 1=event mode active 
#define TRACKPAD_RESEED 0x02    // Reseed all the normal mode channels 
#define AUTO_ATI  0x04    // Perform AutoATI routine (depend on Mode selected) 
#define MODE_SELECT  0x08    // 0 = Normal Mode  /  1 = ProxMode 
#define PM_RESEED  0x10    // Reseed the Prox Mode channels 
           
#define AUTO_MODES  0x40    // 0 = Normal/PM manual, 1=Auto switch between NM and PM 
#define ACK_RESET  0x80    // clear the SHOW_RESET flag 
           
// Bit definitions - ControlSettings1                                     
#define SNAP_EN   0x01    // 0= snaps calculated / 1=not calculated 
#define LOW_POWER  0x02    // 0= normal power charging 1=low power charging 
#define SLEEP_EN  0x04    // 0= no sleep added / 1=permanent sleep time added 
#define REVERSE_EN  0x08   // 0= disabled (conventional prox detection) / 1=enabled (prox trips both ways)  
#define DIS_PMPROX_EVENT 0x10    // 0 = PMProx event enabled / 1 = enabled for EventMode 
#define DIS_SNAP_EVENT  0x20    // 0 = Snap event enabled / 1 = disabled for EventMode  
   
#define DIS_TOUCH_EVENT 0x40    // 0 = Touch event enabled / 1 = disabled for EventMode 
            
// Bit definitions - FilterSettings0                                              
#define DIS_TOUCH_FILTER 0x01    // 0=enabled    1=disabled 
#define DIS_HOVER_FILTER 0x02    // 0=enabled    1=disabled 
#define SELECT_TOUCH_FILTER 0x04    // 0=Dynamic filter  1=fixed beta  
#define DIS_PM_FILTER  0x08    // 0 = CS filtered in PM 1= CS raw in PM  
#define DIS_NM_FILTER  0x10    // 0 = CS filtered in NM 1= CS raw in NM 
           
// Bit definitions - PMSetup0                                                      
#define RX_SELECT0  0x01    //   Decimal value selects an INDIVIDUAL Rx for ProxMode 
#define RX_SELECT1  0x02     
#define RX_SELECT2  0x04     
#define RX_SELECT3  0x08     
          
#define RX_GROUP  0x40    // 0 = RxA  /  1 = RxB 
#define CHARGE_TYPE  0x80    // 0 = Projected  /  1 = Self / surface 
           
// Bit definitions - ProxSettings0                                    
#define NOISE_EN  0x20    // 0 = noise detection disabled / 1 = noise detection enabled 

2.7.2 IQS5xx_Init 

The default values implemented on-chip are represented in the listing of the constants in the 
IQS5xx_Init.h file below.  As mentioned these will be changed according to the project 
requirements, but for illustration purposes they are shown with default values here. 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 23 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

Listing 20.  Constants declared in IQS5xx_Init.h 

// Product Number 
#define PRODUCT_NUMBER  40     // Note: 2 bytes   
#define PROJECT_NUMBER   0      // Note: 2 bytes       
#define VERSION_NUMBER  54       
           
#define CONTROLSETTINGS0_VAL  0x00     
#define CONTROLSETTINGS1_VAL  0x00     
           
#define PROXTHRESHOLD_VAL  10       
#define TOUCHMULTIPLIER_VAL  5        
#define TOUCHSHIFTER_VAL  7        
#define PMPROXTHRESHOLD_VAL  10       
#define SNAPTHRESHOLD_VAL  100      // Note: 2 bytes 
#define PROXTHRESHOLD2_VAL  10       
#define TOUCHMULTIPLIER2_VAL  5        
#define TOUCHSHIFTER2_VAL  7        
           
#define ATITARGET_VAL   600      // Note: 2 bytes 
#define ATIC_VAL   0        
#define ATITARGET2_VAL   600      // Note: 2 bytes 
#define ATIC2_VAL   0        
           
#define FILTERSETTINGS0_VAL  0x00     
#define TOUCHDAMPING_VAL  128      
#define HOVERDAMPING_VAL  38       
#define PMCOUNTDAMPING_VAL  16       
#define LPPMCOUNTDAMPING_VAL 128      
#define NMCOUNTDAMPING_VAL  3        
           
#define RESEEDTIME_VAL   80       
#define COMMSTIMEOUT_VAL  100      
#define MODETIME_VAL   8        
#define LPTIME_VAL   8        
#define SLEEPTIME_VAL   3        
           
#define TOTALRXS_VAL   10       
#define TOTALTXS_VAL   15       
#define TRACKPADRXS_VAL  10       
#define TRACKPADTXS_VAL  15       
#define PMSETUP0_VAL   0x40     
#define TXHIGH_VAL   0x7F     
#define TXLOW_VAL   0xFF     
           
#define PROXSETTINGS0_VAL  0x24     
#define PROXSETTINGS1_VAL  0x72     
#define PROXSETTINGS2_VAL  0x15     
#define PROXSETTINGS3_VAL  0x43     
           
#define ACTIVECHANNELS0_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS1_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS2_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS3_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS4_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS5_VAL  0x3FF   // Note: 2 bytes 
#define ACTIVECHANNELS6_VAL  0x3FF   // Note: 2 bytes 
#define ACTIVECHANNELS7_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS8_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS9_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS10_VAL  0x3FF    // Note: 2 bytes 



 

IQ Switch® 

ProxSense™ Series 
 

 

Copyright © Azoteq (Pty) Ltd 2010. IQS5xx Trackpad Communication Interface Page 24 of 24 

All Rights Reserved. Revision – 0.01 November 2012 

 

Please visit www.azoteq.com for a full portfolio of the ProxSenseTM 
Capacitive Sensors, Datasheets, Application Notes and Evaluation Kits 

available. 
ProxSenseSupport@azoteq.com 

 

 

#define ACTIVECHANNELS11_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS12_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS13_VAL  0x3FF    // Note: 2 bytes 
#define ACTIVECHANNELS14_VAL  0x3FF // Note: 2 bytes 
           
#define PROXDB_VAL   0x44     
#define TOUCHSNAPDB_VAL  0x44     
           
#define PMATITARGET_VAL  500      // Note: 2 bytes 
#define PMATIC_VAL   0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

PRETORIA OFFICE 

Physical Address 

160 Witch Hazel Avenue 

Hazel Court 1, 1st Floor 

Highveld Techno Park 

Centurion, Gauteng 

Republic of South Africa 

 

Tel: +27 12 665 2880 

Fax: +27 12 665 2883  

PAARL OFFICE 

Physical Address 

109 Main Street 

Paarl  

7646 

Western Cape 

Republic of South Africa 

 

Tel: +27 21 863 0033 

Fax: +27 21 863 1512 

 

 

 

 

 


