
 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 1 of 19

All Rights Reserved. Revision 1.1 August 2013

Application Note: AZD066
IQ Switch® - ProxSense® Series

IQS213 Communication and Interface Guideline

Contents

1 INTRODUCTION ... 2

2 COMMUNICATION PROTOCOL .. 3

2.1 BUS CHARACTERISTICS .. 4
2.2 CONTROL BYTE AND DEVICE ADDRESS .. 6

3 IQS213 COMMUNICATION WINDOW .. 7

3.1 USING THE RDY LINE .. 7
3.2 ACKNOWLEDGE POLLING ... 7
3.3 INITIAL WINDOW ... 8

4 WRITING TO OR READING FROM IQS213 ... 9

4.1 WRITE OPERATION ... 10
4.2 READ OPERATION .. 14

5 ADJUSTING SETTINGS FOR IQS213 ... 17

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 2 of 19

All Rights Reserved. Revision 1.1 August 2013

1 Introduction

This application note is designed to guide the

reader through the process of setting up the

communication interface between the

ProxSense® IQS213 IC and any MCU capable of

I2C (400kBit/s) communication.

This is done through easy to understand flow

diagrams as well as providing the source code

in listings throughout the document.

In Figure 1 below an overview flow diagram is

shown to provide the reader with an overview

of what is discussed within this document.

Host MCU sample source code (C-code) is

available on request.

Figure 1: Initialize I2C Flow Diagram

Initialize I2C

CLK, DATA, RDY
Inputs and floating

Turn IQS213 ON

Provide 3.3V to the IC’s VDDHI

Initialize IQS213 I2C

IQS213 starts up in event mode and for that reason

a comms. window of 15ms (tCOMMS) exist where

comms can be initialized. If the initial comms.

window is missed a handshake can be done to

trigger another comms. window.

START

END

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 3 of 19

All Rights Reserved. Revision 1.1 August 2013

2 Communication Protocol

The IQS213 uses a bi-directional 2-wire bus

and data transmission protocol. The serial

protocol is I2CTM compatible. The IQS213 has

an optional ready (RDY) pin which indicates

when the device enters its communication

window period. Communication with the

device can only take place in this state, this

can be determined by monitoring the RDY line

or by using ACK polling. The IQS213 only

functions as a slave device on the bus. The

bus is controlled by a master device which

generates the serial clock (SCL), controls bus

access, and generates the START and STOP

conditions. The serial clock (SCL) and serial

data (SDA) lines are open-drain and therefore

must be pulled high to the operating voltage

with a pull-up resistor (4.7kΩ recommended).

The RDY pin functions as an open-drain pin

and should always be pulled to the operating

voltage of the master device via a resistor

(100kΩ recommended).

During the communication window period the

RDY line will remain low (high for pre-

production engineering versions of the IC) for

a selectable duration of always/2ms (See

datasheet for selection options). If the master

does not initiate a data transfer during this

time, the device will exit the communication

window and continue doing conversions.

During the communication window the

address pointer will default to the value

specified in the DEFAULT_ADDR register.

Using this method the user can simply start

reading without having to set the address

pointer first. The RDY line will remain low for

the duration of the communication window

period.

In the figure below (Figure 2) the data transfer

sequence for the communication protocol is

shown as an overview of what is explained

within this section.

Figure 2: Data Transfer Sequence on the Serial Bus.

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 4 of 19

All Rights Reserved. Revision 1.1 August 2013

2.1 Bus Characteristics

The following bus protocol has been defined:

 Data transfer may only be initiated when

the bus is not busy

 During data transfer, the data line must

remain stable whenever the clock line is

HIGH. Changes in the data line while the

clock is HIGH will be interpreted as START

and STOP conditions.

 The following conditions have been defined

for the bus: (refer to Figure 2)

 Bus Idle (A) - The SCL and SDA lines are

both HIGH.

 START Condition (B) - A HIGH to LOW

transition of the SDA while the SCL is

HIGH. All serial communication must be

preceded by a START condition.

SDA

SCL

START

Figure 3: Start Condition.

Listing 1. START Condition.

/*

 Generate Start Condition

*/

void i2c_start(void)

{

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 while(!I2C_CLK_IN); // Wait for I2C CLK line low (clock stretching)

 wait(2); // Wait two I2C clock cycles

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 wait(2); // Wait two I2C clock cycles

 while(I2C_RDY_IN); // Wait while ready high (This could take long in event mode)

 // RDY checks could also be done before generating a start condition

 wait(100); // Delay 100 clock cycles

 I2C_DATA_OUT_PP_LOW; // Set I2C DATA pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_OUT_PP_LOW; // Set I2C CLK pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

}

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 5 of 19

All Rights Reserved. Revision 1.1 August 2013

 STOP Condition (C) - A LOW to HIGH

transition of the SDA while the SCL is

HIGH. All serial communication must be

ended by a STOP condition. NOTE: When

a STOP condition is sent the device will

exit the communications window and

continue with conversions.

SDA

SCL

STOP

Figure 4: Stop Condition.

 Data Valid (D) - The state of the SDA line

represents valid data when, after a

START condition, the SDA is stable for the

duration of the HIGH period of the clock

signal. The data on the line must be

changed during the LOW period of the

clock signal. There is one clock pulse per

bit of data. Each data transfer is initiated

with a START condition and terminated

with a STOP condition.

 Acknowledge - The slave device must

generate an acknowledge (ACK) after the

reception of each byte. The master

device must generate an extra (9th) clock

pulse which is associated with this

acknowledge bit. The device that

acknowledges, has to pull down the SDA

line during the acknowledge clock pulse.

NOTE: The IQS213 does not generate any

acknowledge bits while it is not in its

communication window.

Listing 2. STOP Condition.

/*

 Generate Stop Condition

*/

void i2c_stop(void)

{

 I2C_CLK_OUT_PP_LOW; // Set I2C CLK pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

 I2C_DATA_OUT_PP_LOW; // Set I2C DATA pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 while(!I2C_CLK_IN); // Wait for I2C CLK line low (clock stretching)

 wait(2); // Wait two I2C clock cycles

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 wait(2); // Wait two I2C clock cycles

}

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 6 of 19

All Rights Reserved. Revision 1.1 August 2013

Listing 3. Check for Acknowledge.

/*

 Check for acknowledge

*/

unsigned char i2c_ack_check(void)

{

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 wait(2); // Wait two I2C clock cycles

 while(!I2C_CLK_IN); // Wait for I2C CLK line low (clock stretching)

 wait(2); // Wait two I2C clock cycles

 if (I2C_DATA_IN) return 1; // Return 1 if no acknowledge received

 else return 0; // Return 0 if acknowledge received

}

2.2 Control byte and Device Address

The Control byte indicates the 7-bit device

address and the Read/Write indicator bit. The

structure of the control byte is shown in

Figure 5.

To confirm the address, the software

compares the received address with the

device address. The IQS213 has only one I2C

address = 0x44h.

Only a single IQS213 device can thus be

operated on the I2C bus.

Figure 5: Control Byte Format.

1 0 0 0 1 0 0 R/W

LSB MSB

7 bit address

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 7 of 19

All Rights Reserved. Revision 1.1 August 2013

3 IQS213 communication window

There are only two methods of entering the

I2C communication window namely “Using the

RDY Line” and “Acknowledge Polling”.

However a word of caution: if the

“Acknowledge Polling” is used and the first

communication window is missed there exists

no further method of invoking another

communication window.

3.1 Using the RDY Line

When polling is not selected, the MCU can

simply wait for the ready line to go low or a

communication window can be invoked by a

handshake.

The handshake is done by setting the ready

line as an output, pulling it low for 10ms and

then setting it to a floating input again. The IC

will respond by pulling ready low from its side

if the handshake was successful. This is done

until an acknowledge can be obtained.

Figure 6: Flow diagram block for Event Mode
Handshake.

Listing 4. Event Mode Handshake

/*

 Invokes Communication Window

*/

void i2c_event_mode_handshake(void)

{

 unsigned int i; // Counter for stuck check

 do

 {

 I2C_RDY_OUT_PP_LOW;

 delay_ms(10);

 I2C_RDY_IN_FLOAT;

 i2c_wait();

 delay_ms(1);

 i++;

 }while(!I2C_RDY_IN || (i == 15)) ;// Test for Comms. Window

}

3.2 Acknowledge Polling

If the Master device does not have an I/O

available for the RDY pin, ACK polling can be

used to determine when the device is ready

for communication. The device will not

acknowledge during a conversion cycle, this

can be used to determine when a cycle is

complete and whether the device has entered

the communication window. Once a STOP

condition is sent by the Master the device will

perform the next conversion cycle. ACK

polling can be initiated at any time during the

conversion cycle to determine if the device

has entered its communication window. The

RDY pin will function normally even if it is not

connected to a master device, or being used

during communication.

To perform ACK polling the master sends a

START condition followed by the control byte.

If the device is still busy then no ACK will be

returned. If the device has completed its cycle

the device will return an ACK and the master

can proceed with the next read or write

operation. To summarise, when polling the

following procedures are executed:

1. The device master (MCU) generates a

START condition.

I
2
C Event Mode Handshake

Set RDY as Output and pull low for 10ms

Set RDY as input and floating
Then wait one clock period

Check RDY again for comms. window
If no comms. window repeat

START

END

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 8 of 19

All Rights Reserved. Revision 1.1 August 2013

2. The device master (MCU) sends the control

byte.

3. The device master (MCU) checks if an ACK

was received.

4. If not received the procedure is repeated

from step 1.

5. The device master (MCU) reads from or

writes to the IQS213.

Note that polling should only be done a fix

number of times to insure that the master

does not get stuck waiting for the slave.

Especially in event mode it could take some

time for the master to get hold of a

communication window. It is also

recommended to place a pull up resistor on

the RDY line even though it is not used to

ensure that communication windows are not

randomly forced.

3.3 Initial Window

The initial communication window or

otherwise called the ’Setup Window’ gives the

user an option to write start-up settings

before any conversions have been done.

Settings can be updated at any time on the IC.

The figure below (Figure 7) shows a timing

diagram that illustrates when the initial

communication window occurs.

TSTART_UP (approx.15ms) after VDDHI is set to a

logic high (in this case 3.3V) the ready line will

drop to a logic low for the ’Setup Window’.

After addressing the IC, the required settings

should be updated (Section 5) and only

thereafter should a STOP bit be issued. If the

’Setup Window’ is not serviced within tCOMMS

(22ms), the ready line will go HIGH again, the

IC will then start with its conversions and

remain in event mode.

Figure 7: Timing Diagram showing initial window

VDDHI

RDY

Comms. Window

tSTART_UP tCOMMS

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 9 of 19

All Rights Reserved. Revision 1.1 August 2013

4 Writing to or Reading from IQS213

Once the communication window is entered

and a data transfer is initiated, a write or a

read operation can be executed. Write and

read operations are in the format shown in

Listings 5 to 8. Once the Master is finished

writing/reading, the Master can then either

generate another start condition (repeat-

start) or it could generate a stop condition.

Another start condition will allow the Master

to perform another read or write operation. A

stop condition will exit the communications

window and the IQS213 will continue with

conversions.

Figure 8: Flow Diagram for a Read or Write Operation

Read from register via I
2
C

Send control byte with LSB = 0

Send memory address

Generate restart

Send control byte with LSB = 1

Read register value

Write to register via I
2
C

Send control byte with LSB = 0

Send memory address

Write register value

Read or

Write

START

END

Write/Read via I
2
C

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 10 of 19

All Rights Reserved. Revision 1.1 August 2013

Figure 9: Flow Diagram for (repeated) communication

4.1 Write Operation

I2C Start
Set SCL as input and floating (HIGH STATE)
Wait while CLK input low (clock stretching)

Wait one I2C clock periods
Set SDA as input and floating (HIGH STATE)

Wait two I2C clock periods
If ready used wait for line to become active

Set SDA as output and pull low (LOW STATE)
Wait two I2C clock periods

Set SCL as output and pull low (LOW STATE)

Wait two clock periods

START

END

I2C Stop
Set CLK as output and pull low (LOW STATE)

Wait two I2C clock periods
Set DATA as output and pull low (LOW STATE)

Wait two I2C clock periods
Set CLK as input and floating (HIGH STATE)
Wait while CLK input low (clock stretching)

Set DATA as input and floating (HIGH STATE)
Wait two I2C clock periods

I2C Repeat Start
Set DATA as input and floating (HIGH STATE)

Wait two I2C clock periods
Set CLK as input and floating (HIGH STATE)
Wait while CLK input low (clock stretching)

Wait two I2C clock periods
Set DATA as output and pull low (LOW STATE)

Wait two clock periods
Set CLK as output and pull low (LOW STATE)

Wait two I2C clock periods

Write/Read via I2C

Write or
Read

Again

No

Yes

Communication via I
2
C

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 11 of 19

All Rights Reserved. Revision 1.1 August 2013

With the R/W bit cleared in the control byte, a

write is initiated. An I2C write is performed by

sending the address, followed by the data.

The Address is only sent once, followed by

data bytes. A block of data can be written by

sending the address followed by multiple

blocks of data. The internal address pointer is

incremented automatically for each

consecutive write. If the pointer increments

to an address which doesn’t exist in the

memory map, no write will take place.

Note that the pointer doesn’t automatically

jump from the end of the LT average block to

the settings block. An example of the write

process is given in Figure 10.

DATA WRITE

S

Start Control Byte

ACK

Word Address(n)

ACK

Data n

ACK S

Stop

ACK

Data n+1

Figure 10: I2C Data Write

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 12 of 19

All Rights Reserved. Revision 1.1 August 2013

Listing 5. Write Operation

/*

 Send a given byte via I2C

 @param send_byte – byte that has to be send via I2C

 @return unsigned char – Boolean value that signifies a acknowledge returned or not

*/

unsigned char i2c_send_byte (unsigned char send_byte)
{
 unsigned char ack; // Variable to store acknowledge boolean in
 unsigned char i; // Counter variable to count off bits send

 for (i = 0; i < 8; i++) //Send 8 bits to I2C Bus
 {
 wait(1); // Wait one I2C clock cycle
 if (send_byte & 0x08) // If most significant bit equal to 1
 {
 I2C_DATA_IN_FLOAT; // Set DATA pin HIGH to clock out a 1
 }
 else
 {
 I2C_DATA_OUT_PP_LOW; // Set DATA pin LOW to clock out a 0
 }

 send_byte <<= 1; // Shift ‘send_byte’ left with one bit in order to send the next bit

 wait(1); // Wait one I2C clock cycle
 I2C_CLK_IN_FLOAT; // Set CLK pin HIGH
 wait(1); // Wait one I2C clock cycle

 while(!I2C_CLK_IN); // Wait for I2C CLK pin low (clock stretching)

 wait(1); // Wait one I2C clock cycle
 I2C_CLK_OUT_PP_LOW; // Set CLK pin LOW
 }

 ack = i2c_ack_check (); // Check for an acknowledge bit
 I2C_CLK_OUT_PP_LOW; // Set CLK pin LOW
 wait(1); // Wait one I2C clock cycle

 return ack; // Return acknowledge boolean

}

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 13 of 19

All Rights Reserved. Revision 1.1 August 2013

Listing 6. Register Write Operation

/*

 Send a given byte via I2C to specific register

 Note: This function is called once already in comms window, thus start() or repeat_start() called prior calling i2c_write_register

 After the function call the slave will still be in a comms window, waiting for either a stop or a repeat start

 @param control_byte – I2C control byte

 @param mem_address – Address or register that has to be written to

 @param mem_value – Byte that has to written to register

 @return unsigned char – Boolean value that signifies a acknowledge returned or not

*/
unsigned char i2c_write_register(unsigned char device_address, unsigned char mem_address, unsigned char mem_value)
{
 unsigned char ack; // Variable to store acknowledge boolean in
 unsigned char polling_attempt = 0; // Counter for polling attempts

 ack = i2c_send_byte(device_address); // Send device address to I2C Bus

 #ifdef POLLING // Include code segment if polling enabled
 while (ack && (polling_attempt < POLLING_ATTEMPTS))
 {
 wait(2);
 i2c_start();
 ack = i2c_send_byte (device_address); // Send control byte to I2C Bus
 polling_attempt++; // Increase polling attempts counter
 }
 #endif

 if (!ack)
 {
 ack = i2c_send_byte (mem_address);
 ack = i2c_send_byte (mem_value);
 i2c_wait();
 }
 return ack;
}

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 14 of 19

All Rights Reserved. Revision 1.1 August 2013

4.2 Read Operation

With the R/W bit SET in the control byte, a

read is initiated. Data will be read from the

address specified by the internal address

pointer (Figure 12). This pointer will be

automatically incremented (to next available

address in memory map) to read through the

memory map data blocks. If a random

address is to be read, a Random Read must be

performed. The process for a Random Read is

as follows: write to the pointer (Word Address

in Figure 11), initiate a repeated-Start, read

from the address.

In read mode it is the master’s responsibility

to acknowledge data read. The slave will send

the next byte (clock stretch) if an ACK is given

after the master has read a byte. The slave

then waits for a repeat start or a stop

condition from the master.

S

Start Control Byte

ACK

Data n

ACK

Data n+1

Current Address Read

S

Stop

NACK

Figure 12: I2C Current Address Read

S

Start Control Byte

ACK

Data n

Random Read

S

Stop

NACKS

Start Control Byte

ACK

Word Address(n)

ACK

Figure 11: I2C Random Read

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 15 of 19

All Rights Reserved. Revision 1.1 August 2013

Listing 7. Read Operation.

/*

 Read byte via I2C

 @param ack if 1 send acknowledge bit else don’t send acknowledge bit.

 @return byte received

*/

unsigned char i2c_read_byte(unsigned char ack)

{

 unsigned char i, receive_byte = 0;

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 wait(2); // Wait two I2C clock cycles

 for (i = 8; i > 0; i--) // Loop and read 8 bits from I2C DATA pin

 {

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 while(!I2C_CLK_IN); // Wait for I2C CLK line low (clock stretching)

 if (I2C_DATA_IN) receive_byte |= (1 << (i - 1)); //Read data from I2C DATA pin

 wait(1); // Wait one I2C clock cycle

 I2C_CLK_OUT_PP_LOW; // Set I2C CLK pin as output (push-pull) and floating

 }

 wait(1); // Wait one I2C clock cycle

 if (ack == 0) I2C_DATA_IN_FLOAT; //

 else I2C_DATA_OUT_PP_LOW; //Send acknowledge if required

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 while(!I2C_CLK_IN); // Wait for I2C CLK pin low (clock stretching)

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_OUT_PP_LOW; // Set I2C CLK pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 return receive_byte;

}

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 16 of 19

All Rights Reserved. Revision 1.1 August 2013

Listing 8. Read I2C Data.

/*

 Read byte from specified address via I2C

 Note: This function is called once already in comms window, thus start() or repeat_start() called prior calling i2c_write_register

 After the function call the slave will still be in a comms window, waiting for either a stop or a repeat start

 @param mem_address

 @param

 @return acknowledge status

*/

unsigned char i2c_read_register(unsigned char device_address, unsigned char mem_address, unsigned char *data_read)

{

 unsigned char temp = 0;

 unsigned char ack = 0;

 unsigned char control_byte = (device_address << 1);

 unsigned char polling_attempt = 0; //Counter for polling attempts

 ack = i2c_send_byte (control_byte); // Send device address

 #ifdef POLLING //If polling enabled

 while (ack && (polling_attempt < POLLING_ATTEMPTS))

 {

 wait(2);

 I2CStart();

 ack = 2c_send_byte (control_byte);

 polling_attempt++; //Increase polling attempts counter

 }

 #endif

 if (ack == 0)

 {

 i2c_send_byte (mem_address); // Write mem_address to internal pointer

 i2c_repeat_start();

 control_byte = (device_address << 1) | 0x01;

 ack = i2c_send_byte (control_byte); // Send controlbyte with r/w = 1

 temp = i2c_read_byte (1); //Read byte and don’t acknowledge to indicate a repeat start or stop will follow

 (*data_read) = temp;

 }

 return ack;

}

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 17 of 19

All Rights Reserved. Revision 1.1 August 2013

5 Adjusting Settings for IQS213

Refer to the IQS213 memory map in its datasheet for specific addresses of registers.

Figure 13: Initialize I2C Flow Diagram

Adjust IC Settings

Redo ATI

START

END

Wait for Device to do ATI

Event Mode Handshake
(Only if in Event Mode)

Test for
Initial

Window

Non - Initial

Initial

Send Control Byte

Received
ACK

ACK

NACK

Initialize IQS213 I
2
C

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 18 of 19

All Rights Reserved. Revision 1.1 August 2013

Listing 9. Adjusting Setting for IQS213

/*Initialize IQS213*/

void Init_IQS213(void)
{
 unsigned char res;

 res = 1;
 while (res != 0) {
 i2c_event_mode_handshake();
 i2c_start();
 res = i2c_write_register (PROX_SETTINGS1, 0x60); // Streaming Mode for setup (Event Mode disabled)
 i2c_stop();
 }

 res = 1;
 while (res != 0) {
 i2c_start();
 res = i2c_write_register(SWIPE_SETTINGS, 0x81) ; // Enable third Channel (CRX2)
 i2c_repeat_start();
 res |= i2c_write_register(PROX_SETTINGS1, 0x62) ; // ATI OFF
 /*Set Touch Thresholds*/
 i2c_repeat_start();
 res |= i2c_write_register(TOUCH_TH_1, 0x24); // Set Channel1 Touch Threshold to 36 counts
 i2c_repeat_start();
 res |= i2c_write_register(TOUCH_TH_2, 0x24);
 i2c_repeat_start();
 res |= i2c_write_register(TOUCH_TH_3, 0x24);
 /* Set Proximity Thresholds */
 i2c_repeat_start();
 res |= i2c_write_register(PROX_TH, 0x0E); // Set Proximity Threshold to 14 counts
 /* Set Target and Base values */
 i2c_repeat_start();
 res |= i2c_write_register(TARGET_CH0, 0x50); //Set PROX Channel ATI Target Count = 640
 i2c_repeat_start();
 res |= i2c_write_register(TARGET_CH1_CH3, 0x28); //Set TOUCH Channels’ ATI Target Count = 320
 i2c_repeat_start();
 res |= i2c_write_register(BASE_VALUE, 0x64); //Set Base Value counts = 100
 /* Turn ATI ON */
 i2c_repeat_start();
 res |= i2c_write_register(PROX_SETTINGS1, 0x20) ; // ATI ON, Event Mode I2C Enabled
 i2c_stop();
 }

 res = 1;
 while (res != 0) {
 i2c_event_mode_handshake();
 i2c_start();
 res = i2c_write_register (PROX_SETTINGS0, 0x10); // Redo ATI
 i2c_stop();
 }

 delay_ms(100);

 res = 1;
 while (res != 0) {
 delay_ms(10);
 i2c_start();
 res = i2c_read_register(SYS_FLAGS_0, bit2); //read ATI busy bit
 i2c_stop();
 }
}

 IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2013 Application Note: AZD066 Page 19 of 19

All Rights Reserved. Revision 1.1 August 2013

6 Contact Information

 USA Asia South Africa

Physical

Address

6507 Jester Blvd
Bldg 5, suite 510G
Austin
TX 78750
USA

Rm1725, Glittery City

Shennan Rd

Futian District

Shenzhen, 518033

China

109 Main Street

Paarl

7646

South Africa

Postal

Address

6507 Jester Blvd
Bldg 5, suite 510G
Austin
TX 78750
USA

Rm1725, Glittery City

Shennan Rd

Futian District

Shenzhen, 518033

China

PO Box 3534

Paarl

7620

South Africa

Tel +1 512 538 1995 +86 755 8303 5294

ext 808

+27 21 863 0033

Fax +1 512 672 8442 +27 21 863 1512

Email kobusm@azoteq.com linayu@azoteq.com.cn info@azoteq.com

Please visit www.azoteq.com for a list of distributors and worldwide representation.

The following patents relate to the device or usage of the device: US 6,249,089 B1, US 6,621,225 B2, US 6,650,066 B2, US 6,952,084 B2, US
6,984,900 B1, US 7,084,526 B2, US 7,084,531 B2, US 7,265,494 B2, US 7,291,940 B2, US 7,329,970 B2, US 7,336,037 B2, US 7,443,101 B2, US
7,466,040 B2, US 7,498,749 B2, US 7,528,508 B2, US 7,755,219 B2, US 7,772,781, US 7,781,980 B2, US 7,915,765 B2, US 7,994,726 B2, US 8,

035,623 B2, US 8,288,952 B2, EP 1 120 018 B1, EP 1 206 168 B1, EP 1 308 913 B1, EP 1 530 178 B1, ZL 200880005683.2, ZL 99 8 14357.X,
AUS 761094, HK 104 14100A

IQ Switch®, SwipeSwitch™, ProxSense®, LightSense™, AirButton® and the logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date
and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided

on a “as is” basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these
products or information for any purpose. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not

limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual
property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation,

failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such
damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such

applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to
malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No licenses to patents are

granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned
limitations or exclusions does not apply, it is agreed that Azoteq’s total liability for all losses, damages and causes of action (in contract, tort (including

without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its
products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products,

programs and services at any time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date
information and binding Terms and Conditions please refer to www.azoteq.com.

WWW.AZOTEQ.COM

info@azoteq.com

mailto:kobusm@azoteq.com
mailto:linayu@azoteq.com.cn
mailto:info@azoteq.com
file:///C:/Users/User/Documents/ProxSense/Marketing%20-%20Sales/www.azoteq.com
http://www.azoteq.com/
http://www.azoteq.com/

