
IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 1 of 19

All Rights Reserved. Revision 1.2.0 June 2012

Application Note: AZD062

IQ Switch
®
 - ProxSense

®
 Series

IQS253 Communication and Interface Guideline

Contents

1 INTRODUCTION ... 2

2 COMMUNICATION PROTOCOL .. 3

2.1 BUS CHARACTERISTICS .. 4
2.2 CONTROL BYTE AND DEVICE ADDRESS .. 6

3 IQS253 COMMUNICATION WINDOW .. 7

3.1 USING THE RDY LINE .. 7
3.2 ACKNOWLEDGE POLLING ... 7
3.3 INITIAL WINDOW ... 8

4 WRITING TO OR READING FROM IQS253 ... 9

4.1 WRITE OPERATION ... 11
4.2 READ OPERATION .. 14

5 ADJUSTING SETTING FOR IQS253 .. 17

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 2 of 19

All Rights Reserved. Revision 1.2.0 June 2012

1 Introduction

This application note is designed to guide
the reader through the process of setting
up the communication interface between
the ProxSense® IQS253 IC and any MCU
capable of I2C (400kBit/s) communication.
This is done through easy to understand
flow diagrams as well as providing the
source code in listings throughout the
document.

In Figure 1 below an overview flow
diagram is shown to provide the reader
with an overview of what is discussed
within this document.

The complete source code is available on
request.

Figure 1: Initialize I2C Flow Diagram

Initialize I2C

CLK, DATA, RDY
Inputs and floating

Turn IQS253 ON

Provide 3.3V to the IC’s VDDHI

Initialize IQS253 I2C

IQS253 starts up in event mode and for that reason

a comms. window of 15ms (tCOMMS) exist where

comms can be initialized. If the initial comms.

window is missed a handshake can be done to

trigger another comms. window.

START

END

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 3 of 19

All Rights Reserved. Revision 1.2.0 June 2012

2 Communication Protocol

The IQS253 uses a bi-directional 2-wire
bus and data transmission protocol. The
serial protocol is I2CTM compatible. The
IQS253 has an optional ready (RDY) pin
which indicates when the device enters its
communication window period.
Communication with the device can only
take place in this state, this can be
determined by monitoring the RDY line or
by using ACK polling. The IQS253 only
functions as a slave device on the bus.
The bus is controlled by a master device
which generates the serial clock (SCL),
controls bus access, and generates the
START and STOP conditions. The serial
clock (SCL) and serial data (SDA) lines
are open-drain and therefore must be
pulled high to the operating voltage with a
pull-up resistor (4.7kΩ recommended).
The RDY pin functions as an open-drain
pin and should always be pulled to the
operating voltage of the master device via
a resistor (100kΩ recommended).

During the communication window period
the RDY line will remain low (high for pre-
production engineering versions of the IC)
for a selectable duration of always/2ms
(See datasheet for selection options). If
the master does not initiate a data transfer
during this time, the device will exit the
communication window and continue
doing conversions. During the
communication window the address
pointer will default to the value specified in
the DEFAULT_ADDR register. Using this
method the user can simply start reading
without having to set the address pointer
first. The RDY line will remain low for the
duration of the communication window
period.

In the figure below (Figure 2) the data
transfer sequence for the communication
protocol is shown as an overview of what
is explained within this section.

Figure 2: Data Transfer Sequence on the Serial Bus.

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 4 of 19

All Rights Reserved. Revision 1.2.0 June 2012

2.1 Bus Characteristics

The following bus protocol has been

defined:

 Data transfer may only be initiated
when the bus is not busy

 During data transfer, the data line
must remain stable whenever the
clock line is HIGH. Changes in the
data line while the clock is HIGH will
be interpreted as START and STOP
conditions.

 The following conditions have been

defined for the bus: (refer to Figure 2)

 Bus Idle (A) - The SCL and SDA
lines are both HIGH.

 START Condition (B) - A HIGH to
LOW transition of the SDA while the
SCL is HIGH. All serial
communication must be preceded by
a START condition.

SDA

SCL

START

Figure 3: Start Condition.

Listing 1. START Condition.

/*

 Generate Start Condition

*/

void i2c_start(void)

{

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 while(!I2C_CLK_IN); // Wait for I2C CLK line low (clock stretching)

 wait(2); // Wait two I2C clock cycles

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 wait(2); // Wait two I2C clock cycles

 while(I2C_RDY_IN); // Wait while ready high (This could take long in event mode)

 // RDY checks could also be done before generating a start condition

 wait(100); // Delay 100 clock cycles

 I2C_DATA_OUT_PP_LOW; // Set I2C DATA pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_OUT_PP_LOW; // Set I2C CLK pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

}

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 5 of 19

All Rights Reserved. Revision 1.2.0 June 2012

 STOP Condition (C) - A LOW to
HIGH transition of the SDA while the
SCL is HIGH. All serial
communication must be ended by a
STOP condition. NOTE: When a
STOP condition is sent the device will
exit the communications window and
continue with conversions.

SDA

SCL

STOP

Figure 4: Stop Condition.

 Data Valid (D) - The state of the SDA
line represents valid data when, after
a START condition, the SDA is stable
for the duration of the HIGH period of
the clock signal. The data on the line
must be changed during the LOW
period of the clock signal. There is
one clock pulse per bit of data. Each
data transfer is initiated with a START
condition and terminated with a STOP
condition.

 Acknowledge - The slave device
must generate an acknowledge after
the reception of each byte. The
master device must generate an extra
(9th) clock pulse which is associated
with this acknowledge bit. The device
that acknowledges, has to pull down
the SDA line during the acknowledge
clock pulse. NOTE: The IQS253 does
not generate any acknowledge bits
while it is not in its communication
window.

Listing 2. STOP Condition.

/*

 Generate Stop Condition

*/

void i2c_stop(void)

{

 I2C_CLK_OUT_PP_LOW; // Set I2C CLK pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

 I2C_DATA_OUT_PP_LOW; // Set I2C DATA pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 while(!I2C_CLK_IN); // Wait for I2C CLK line low (clock stretching)

 wait(2); // Wait two I2C clock cycles

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 wait(2); // Wait two I2C clock cycles

}

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 6 of 19

All Rights Reserved. Revision 1.2.0 June 2012

Listing 3. Check for Acknowledge.

/*

 Check for acknowledge

*/

unsigned char i2c_ack_check(void)

{

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 wait(2); // Wait two I2C clock cycles

 while(!I2C_CLK_IN); // Wait for I2C CLK line low (clock stretching)

 wait(2); // Wait two I2C clock cycles

 if (I2C_DATA_IN) return 1; // Return 1 if no acknowledge received

 else return 0; // Return 0 if acknowledge received

}

2.2 Control byte and Device Address

The Control byte indicates the 7-bit device

address and the Read/Write indicator bit.

The structure of the control byte is shown

in Figure 5.

The I2C device has a 7 bit Slave Address

in the control byte as shown in Figure 5.

To confirm the address, the software

compares the received address with the

device address. Please contact your local

Azoteq distributor for devices with

preconfigured I2C addresses. The two

sub-address bits allow 4 IQS253 slave

devices to be used on the same I2C bus,

as well as to prevent address conflict.

If more than one IQS253 are on the I2C

bus then sub-address bits and self/mutual

settings must be preconfigured.

Figure 5: Control Byte Format.

1 0 0 0 1 I2C_A1 I2C_A2 R/W

LSB MSB

7 bit address

I2C Group Sub-Addresses

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 7 of 19

All Rights Reserved. Revision 1.2.0 June 2012

3 IQS253 communication window

There are only two methods of entering

the I2C communication window namely

“Using the RDY Line” and “Acknowledge

Polling”. However a word of caution: if the

“Acknowlegde Polling” is used and the first

communication window is missed there

exists no further method of invoking

another communication window.

The first communication of the
ProxSense® IQS253 IC after it is powered
is special in the sense that there are
settings that can only be adjusted within
this specific communication window.

3.1 Using the RDY Line

When polling is not selected the MCU can

simply wait for the ready line to go low or

a communication window can be invoked

by a handshake. The handshake is done

by setting the ready line as an output,

pulling it low for 10ms and then setting it

to a floating input again. The IC will

respond by pulling ready low from its side

if the handshake was successful. This is

done until an acknowledge can be

obtained.

Figure 6: Flow diagram block for Event Mode
Handshake.

Listing 4. Event Mode Handshake

/*

 Invokes Communication Window

*/

void i2c_event_mode_handshake(void)

{

 unsigned int i; // Counter for stuck check

 do

 {

 I2C_RDY_OUT_PP_LOW;

 delay_ms(10);

 I2C_RDY_IN_FLOAT;

 i2c_wait();

 delay_ms(1);

 i++;

 }while(!I2C_RDY_IN || i == 15) ;// Test for Comms. Window

}

3.2 Acknowledge Polling

If the Master device does not have an I/O

available for the RDY pin, ACK polling can

be used to determine when the device is

ready for communication. The device will

not acknowledge during a conversion

cycle, this can be used to determine when

a cycle is complete and whether the

device has entered the communication

window. Once a STOP condition is sent

by the Master the device will perform the

next conversion cycle. ACK polling can be

initiated at any time during the conversion

cycle to determine if the device has

entered its communication window. The

RDY pin will function normally even if it is

not connected to a master device, or

being used during communication.

To perform ACK polling the master sends

a START condition followed by the control

byte. If the device is still busy then no

ACK will be returned. If the device has

completed its cycle the device will return

I
2
C Event Mode Handshake

Set RDY as Output and pull low for 10ms

Set RDY as input and floating
Then wait one clock period

Check RDY again for comms. window
If no comms. window repeat

START

END

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 8 of 19

All Rights Reserved. Revision 1.2.0 June 2012

an ACK and the master can proceed with

the next read or write operation. To

summarise, when polling the following

procedures are executed:

1. The device master (MCU) generates a

START condition.

2. The device master (MCU) sends the

control byte.

3. The device master (MCU) checks if an

acknowledge was received.

4. If not received the procedure is

repeated from step 1.

5. The device master (MCU) reads from

or writes to the IQS253.

Note that polling should only be done a fix
number of times to insure that the master
does not get stuck waiting for the slave.
Especially in event mode it could take
some time for the master to get hold of a
communication window. It is also
recommended to place a pull up resistor
on the RDY line even though it is not used
to ensure that communication windows
are not randomly forced.

3.3 Initial Window

The initial communication window or
otherwise called the ’Setup Window’ gives
the user an option to write start-up
settings before any conversions have
been done.

Most settings can be updated at any time
on the IC, except switching between self
and mutual capacitance technology, which
can only be done in the ’Setup Window’.
This enables the designer to use the
device in the state that fits the operation
best at a given at any given time; provided
that he has control over the IC’s VDDHI
line. The figure below (Figure 7) shows a
timing diagram that illustrates when the
initial communication window occurs.
TSTART_UP (approx.15ms) after VDDHI is
set to a logic high (in this case 3.3V) the
ready line will drop to a logic low for the
’Setup Window’. After addressing the IC,
the required settings should be updated
(Section 5) and only thereafter should a
STOP bit be issued. If the ’Setup Window’
is not serviced within tCOMMS (22ms), the
ready line will go HIGH again, the IC will
then start with its conversions and remain
in event mode.

The IQS253 can also be requested to be
preconfigured as a self or mutual
capacitance device (unless application
requires switching between the two) which
would then not require setting up this
function via I2C commands.

Figure 7: Timing Diagram showing initial window

VDDHI

READY

Comms. Window

tSTART_UP tCOMMS

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 9 of 19

All Rights Reserved. Revision 1.2.0 June 2012

4 Writing to or Reading from IQS253

Once the communication window is

entered and a data transfer is initiated, a

write or a read operation can be executed.

Write and read operations are in the

format shown in Listings 5 to 8. Once the

Master is finished writing/reading, the

Master can then either generate another

start condition (repeat-start) or it could

generate a stop condition. Another start

condition will allow the Master to perform

another read or write operation. A stop

condition will exit the communications

window and the IQS253 will continue with

conversions.

Figure 8: Flow Diagram for a Read or Write Operation

Read from register via I
2
C

Send control byte with LSB = 0

Send memory address

Generate restart

Send control byte with LSB = 1

Read register value

Write to register via I
2
C

Send control byte with LSB = 0

Send memory address

Write register value

Read

or

Write

START

END

Write/Read via I
2
C

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 10 of 19

All Rights Reserved. Revision 1.2.0 June 2012

Figure 9: Flow Diagram for (repeated) communication

I2C Start
Set SCL as input and floating (HIGH STATE)
Wait while CLK input low (clock stretching)

Wait one I2C clock periods
Set SDA as input and floating (HIGH STATE)

Wait two I2C clock periods
If ready used wait for line to become active

Set SDA as output and pull low (LOW STATE)
Wait two I2C clock periods

Set SCL as output and pull low (LOW STATE)

START

END

I2C Stop
Set CLK as output and pull low (LOW STATE)

Wait two I2C clock periods
Set DATA as output and pull low (LOW STATE)

Wait two I2C clock periods
Set CLK as input and floating (HIGH STATE)
Wait while CLK input low (clock stretching)

Set DATA as input and floating (HIGH STATE)
Wait two I2C clock periods

I2C Repeat Start
Set DATA as input and floating (HIGH STATE)

Wait two I2C clock periods
Set CLK as input and floating (HIGH STATE)
Wait while CLK input low (clock stretching)

Wait two I2C clock periods
Set DATA as output and pull low (LOW STATE)

Wait two clock periods
Set CLK as output and pull low (LOW STATE)

Wait two I2C clock periods

Write/Read via I2C

Write or
Read
Again

No

Yes

Communication via I
2
C

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 11 of 19

All Rights Reserved. Revision 1.2.0 June 2012

4.1 Write Operation

With the R/W bit cleared in the control
byte, a write is initiated. An I2C write is
performed by sending the address,
followed by the data. The Address is only
sent once, followed by data bytes. A
block of data can be written by sending
the address followed by multiple blocks of
data. The internal address pointer is
incremented automatically for each
consecutive write. If the pointer
increments to an address which doesn’t

exist in the memory map, no write will take
place.

Note that the pointer doesn’t automatically
jump from the end of the LT average block
to the settings block. An example of the
write process is given in Figure 10.

DATA WRITE

S

Start Control Byte

ACK

Word Address(n)

ACK

Data n

ACK S

Stop

ACK

Data n+1

Figure 10: I2C Data Write

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 12 of 19

All Rights Reserved. Revision 1.2.0 June 2012

Listing 5. Write Operation

/*

 Send a given byte via I2C

 @param send_byte – byte that has to be send via I2C

 @return unsigned char – Boolean value that signifies a acknowledge returned or not

*/

unsigned char i2c_send_byte (unsigned char send_byte)
{
 unsigned char ack; // Variable to store acknowledge boolean in
 unsigned char i; // Counter variable to count off bits send

 for (i = 0; i < 8; i++) //Send 8 bits to I2C Bus
 {
 wait(1); // Wait one I2C clock cycle
 if (send_byte & 0x08) // If most significant bit equal to 1
 {
 I2C_DATA_IN_FLOAT; // Set DATA pin HIGH to clock out a 1
 }
 else
 {
 I2C_DATA_OUT_PP_LOW; // Set DATA pin LOW to clock out a 0
 }

 send_byte <<= 1; // Shift ‘send_byte’ left with one bit in order to send the next bit

 wait(1); // Wait one I2C clock cycle
 I2C_CLK_IN_FLOAT; // Set CLK pin HIGH
 wait(1); // Wait one I2C clock cycle

 while(!I2C_CLK_IN); // Wait for I2C CLK pin low (clock stretching)

 wait(1); // Wait one I2C clock cycle
 I2C_CLK_OUT_PP_LOW; // Set CLK pin LOW
 }

 ack = i2c_ack_check (); // Check for an acknowledge bit
 I2C_CLK_OUT_PP_LOW; // Set CLK pin LOW
 wait(1); // Wait one I2C clock cycle

 return ack; // Return acknowledge boolean

}

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 13 of 19

All Rights Reserved. Revision 1.2.0 June 2012

Listing 6. Register Write Operation

/*

 Send a given byte via I2C to specific register

 Note: This function is called once already in comms window, thus start() or repeat_start() called prior calling i2c_write_register

 After the function call the slave will still be in a comms window, waiting for either a stop or a repeat start

 @param control_byte – I2C control byte

 @param mem_address – Address or register that has to be written to

 @param mem_value – Byte that has to written to register

 @return unsigned char – Boolean value that signifies a acknowledge returned or not

*/
unsigned char i2c_write_register(unsigned char device_address, unsigned char mem_address, unsigned char mem_value)
{
 unsigned char ack; // Variable to store acknowledge boolean in
 unsigned char polling_attempt = 0; // Counter for polling attempts

 ack = i2c_send_byte(device_address); // Send device address to I2C Bus

 #ifdef POLLING // Include code segment if polling enabled
 while (ack && (polling_attempt < POLLING_ATTEMPTS))
 {
 wait(2);
 i2c_start();
 ack = i2c_send_byte (device_address); // Send control byte to I2C Bus
 polling_attempt++; // Increase polling attempts counter
 }
 #endif

 if (!ack)
 {
 ack = i2c_send_byte (mem_address);
 ack = i2c_send_byte (mem_value);
 i2c_wait();
 }
 return ack;
}

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 14 of 19

All Rights Reserved. Revision 1.2.0 June 2012

4.2 Read Operation

With the R/W bit SET in the control byte, a
read is initiated. Data will be read from
the address specified by the internal
address pointer (Figure 12). This pointer
will be automatically incremented (to next
available address in memory map) to read
through the memory map data blocks. If a
random address is to be read, a Random
Read must be performed. The process for
a Random Read is as follows: write to the
pointer (Word Address in Figure 11),

initiate a repeated-Start, read from the
address.

In read mode it is the master’s
responsibility to acknowledge data read.
The slave will send the next byte (clock
stretch) if an acknowledge is give after the
master has read a byte. The slave then
waits for a repeat start or a stop condition
from the master.

S

Start Control Byte

ACK

Data n

ACK

Data n+1

Current Address Read

S

Stop

NACK

Figure 12: I2C Current Address Read

S

Start Control Byte

ACK

Data n

Random Read

S

Stop

NACKS

Start Control Byte

ACK

Word Address(n)

ACK

Figure 11: I2C Random Read

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 15 of 19

All Rights Reserved. Revision 1.2.0 June 2012

Listing 7. Read Operation.

/*

 Read byte via I2C

 @param ack if 1 send acknowledge bit else don’t send acknowledge bit.

 @return byte received

*/

unsigned char i2c_read_byte(unsigned char ack)

{

 unsigned char i, receive_byte = 0;

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 wait(2); // Wait two I2C clock cycles

 for (i = 8; i > 0; i--) // Loop and read 8 bits from I2C DATA pin

 {

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 while(!I2C_CLK_IN); // Wait for I2C CLK line low (clock stretching)

 if (I2C_DATA_IN) receive_byte |= (1 << (i - 1)); //Read data from I2C DATA pin

 wait(1); // Wait one I2C clock cycle

 I2C_CLK_OUT_PP_LOW; // Set I2C CLK pin as output (push-pull) and floating

 }

 wait(1); // Wait one I2C clock cycle

 if (ack == 0) I2C_DATA_IN_FLOAT; //

 else I2C_DATA_OUT_PP_LOW; //Send acknowledge if required

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_IN_FLOAT; // Set I2C CLK pin as input and floating

 while(!I2C_CLK_IN); // Wait for I2C CLK pin low (clock stretching)

 wait(2); // Wait two I2C clock cycles

 I2C_CLK_OUT_PP_LOW; // Set I2C CLK pin as output (push-pull) and floating

 wait(2); // Wait two I2C clock cycles

 I2C_DATA_IN_FLOAT; // Set I2C DATA pin as input and floating

 return receive_byte;

}

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 16 of 19

All Rights Reserved. Revision 1.2.0 June 2012

Listing 8. Read I2C Data.

/*

 Read byte from specified address via I2C

 Note: This function is called once already in comms window, thus start() or repeat_start() called prior calling i2c_write_register

 After the function call the slave will still be in a comms window, waiting for either a stop or a repeat start

 @param mem_address

 @param

 @return acknowledge status

*/

unsigned char i2c_read_register(unsigned char device_address, unsigned char mem_address, unsigned char *data_read)

{

 unsigned char temp = 0;

 unsigned char ack = 0;

 unsigned char control_byte = (device_address << 1);

 unsigned char polling_attempt = 0; //Counter for polling attempts

 ack = i2c_send_byte (control_byte); // Send device address

 #ifdef POLLING //If polling enabled

 while (ack && (polling_attempt < POLLING_ATTEMPTS))

 {

 wait(2);

 I2CStart();

 ack = 2c_send_byte (control_byte);

 polling_attempt++; //Increase polling attempts counter

 }

 #endif

 if (ack == 0)

 {

 i2c_send_byte (mem_address); // Write mem_address to internal pointer

 i2c_repeat_start();

 control_byte = (device_address << 1) | 0x01;

 ack = i2c_send_byte (control_byte); // Send controlbyte with r/w = 1

 temp = i2c_read_byte (1); //Read byte and don’t acknowledge to indicate a repeat start or stop will follow

 (*data_read) = temp;

 }

 return ack;

}

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 17 of 19

All Rights Reserved. Revision 1.2.0 June 2012

5 Adjusting Setting for IQS253

Refer to the IQS253 memory map in its datasheet for specific addresses of registers.

Figure 13: Initialize I2C Flow Diagram

Adjust IC Settings

Redo ATI

START

END

Wait for Device to do ATI

Event Mode Handshake
(Only if in Event Mode)

Test for
Initial

Window

Non - Initial

Initial

Send Control Byte

Received
ACK

ACK

NACK

Initialize IQS253 I
2
C

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 18 of 19

All Rights Reserved. Revision 1.2.0 June 2012

Listing 9. Adjusting Setting for IQS253

/*

 Initialize IQS253

*/

void Init_IQS253(void)
{
 unsigned char result;

 do {
 i2c_event_mode_handshake();
 i2c_start();
 result = i2c_write_register(PROX_SETTINGS2, 0x14); //set to streaming mode for setup
 i2c_stop();
 } while(result);

 do {
 i2c_start();
 i2c_write_register(CHAN_ACTIVE, 0x07) ; // Enable Channels (0-2)
 i2c_repeat_start();
 i2c_write_register(PROX_SETTINGS0, 0x40) ; // ATI OFF, ATI partial OFF
 i2c_repeat_start();
 i2c_write_register(PROX_SETTINGS2, 0x40) ; // WDT Off
 i2c_stop();

 /*Set Touch Thresholds*/
 i2c_start();
 result |= i2c_write_register(CH0_TTH, 0x04);
 i2c_repeat_start();
 result |= i2c_write_register(CH1_TTH, 0x20);
 i2c_repeat_start();
 result |= i2c_write_register(CH2_TTH, 0x20);
 /* Set Proximity Thresholds */
 i2c_repeat_start();
 result |= i2c_write_register(CH0_PTH, 0x04);
 i2c_repeat_start();
 result |= i2c_write_register(CH1_PTH, 0x04);
 i2c_repeat_start();
 result |= i2c_write_register(CH2_PTH, 0x04);
 i2c_repeat_start();
 i2c_write_register(TARGET, 0x40); //Set Target Current Count = 512
 i2c_repeat_start();
 result |= i2c_write_register(CHAN_ENABLE, 0x07); //Disable distributed PROX CH0
 i2c_stop();
 }while (result);

 delay_ms(200);

 do { //read ATI busy bit
 delay_ms(10);
 i2c_start();
 result = i2c_read_register(STATUS, 1);
 i2c_stop();
 } while ((result & 0x04) != 0);

}

IQ Switch® ProxSense®

Copyright © Azoteq (Pty) Ltd 2010. Application Note: AZD062 Page 19 of 19

All Rights Reserved. Revision 1.2.0 June 2012

The following patents relate to the device or usage of the device: US 6,249,089 B1, US
6,621,225 B2, US 6,650,066 B2, US 6,952,084 B2, US 6,984,900 B1, US 7,084,526 B2, US
7,084,531 B2, US 7,119,459 B2, US 7,265,494 B2, US 7,291,940 B2, US 7,329,970 B2, US
7,336,037 B2, US 7,443,101 B2, US 7,466,040 B2, US 7,498,749 B2, US 7,528,508 B2, US
7,755,219 B2, US 7,772,781, US 7,781,980 B2, US 7,915,765 B2, EP 1 120 018 B1, EP 1
206 168 B1, EP 1 308 913 B1, EP 1 530 178 B1, ZL 99 8 14357.X, AUS 761094

IQ Switch®, ProxSense®, LightSense™, AirButton® and the logo are
trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication.
Azoteq assumes no liability arising from the use of the information or the product. The
applications mentioned herein are used solely for the purpose of illustration and Azoteq
makes no warranty or representation that such applications will be suitable without
further modification, nor recommends the use of its products for application that may
present a risk to human life due to malfunction or otherwise. Azoteq products are not
authorized for use as critical components in life support devices or systems. No licenses
to patents are granted, implicitly or otherwise, under any intellectual property rights.
Azoteq reserves the right to alter its products without prior notification. For the most up-
to-date information, please refer to www.azoteq.com.

WWW.AZOTEQ.COM

ProxSenseSupport@azoteq.com

http://www.azoteq.com/
http://www.azoteq.com/
mailto:ProxSenseSupport@azoteq.com

