

IQS253 Memory Map IQ Switch[®] - ProxSense[®] Series

Multi-channel Integrated Proximity Sensor with Micro-Processor Core

This design guide provides a description of the communication interface between the master and the IQS253 controller. The Memory Map of the IQS253 is provided in this document, followed by a description of each register and instruction. The IQS253 communicates via I²C. The last section of this document is dedicated to an example implementation and provides example code.

Contents

IQ	S253 Mer	nory Map	1
1	I ² C Det	ails	3
	1.1.1	Control byte and Device Address	3
	1.1.2	l ² C read	
	1.1.3	l ² C write	
	1.1.4	I ² C Communications Window Terminate Command	4
2	Memo	ry Map	5
	2.2 10	Q\$253 Memory Map	6
	2.2.1	Device Information	6
	2.2.2	Device Specific Data	6
	2.2.3	Proximity Status Bytes	6
	2.2.4	Touch Status Bytes	6
	2.2.5	DYCAL Touch Mode indication	
	2.2.6	DYCAL Output indication	
	2.2.7	Halt Bytes	
	2.2.8	Channel Number	
	2.2.9	Counts	
	2.2.10	Long-Term Averages	
	2.2.11	Device Settings	8
	2.3 N	1emory Map Description	. 11
	2.3.1	Device Information	. 11
	2.3.2	Device Specific Data	
	2.3.3	Proximity Status Bytes	. 12
	2.3.4	Touch Status Bytes	. 12
	2.3.5	DYCAL Touch Mode Indication	. 13
	2.3.6	DYCAL Output Indication	. 13
	2.3.7	Halt Bytes	. 14
	2.3.8	Current Channel	
	2.3.9	Counts (CS)	
	2.3.10	Long-Term Average	
	2.3.11	Device Settings	. 14
3	Genera	al Implementation hints	24
	3.1 l ²	C Communication window	. 24
	3.2 S	tartup Procedure	. 24
	3.3 G	eneral I ² C Hints	. 24
	3.3.1	I ² C Pull-up resistors	
	3.3.2	Reset Device while using I ² C	. 24

1 I²C Details

1.1.1 Control byte and Device Address

The Control byte indicates the 7-bit device address and the Read/Write indicator bit. The structure of the control byte is shown in Figure 1.1.

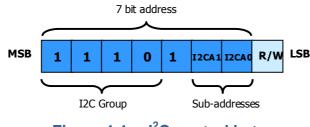
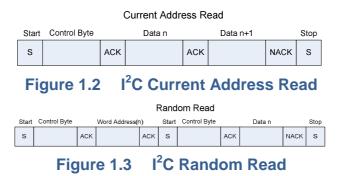



Figure 1.1 I²C control byte

The I^2C device has a 7 bit Slave Address in the control byte as shown in Figure 1.1. To confirm the address, the software compares the received address with the device address. Please contact your local Azoteq distributor for devices with preconfigured I^2C addresses. The two sub-addresses allow 4 IQS253 slave devices to be used on the same I^2C bus, as well as to prevent address conflict.

1.1.2 I²C read

With the R/W bit SET in the control byte, a read is initiated. Data will be read from the address specified by the internal address pointer (Figure 1.2). This pointer will be automatically incremented to read through the memory map data blocks. If a random address is to be read, a *Random Read* must be performed. The process for a Random Read is as follows: write to the pointer (*Word Address* in Figure 1.3), initiate a repeated-Start, read from the address.

1.1.3 I^2C write

With the R/W bit cleared in the control byte, a write is initiated. An I²C write is performed by sending the address, followed by the data. The Address is only sent once, followed by data bytes. A block of data can be written by sending the address followed by multiple blocks of data. The internal address pointer is incremented automatically for each consecutive write, if the pointer increments to an address which doesn't exist in the memory map, no write will take place.

Note that the pointer doesn't automatically jump from the end of the LT average block to the settings block.

An example of the write process is given in Figure 1.4.

Figure 1.4 I²C write

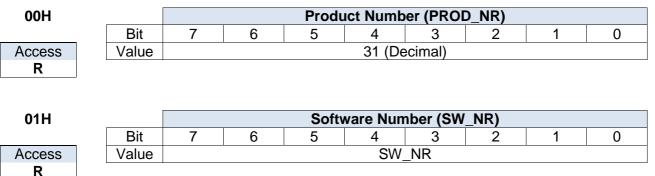
1.1.4 I²C Communications Window Terminate Command

To terminate the communication window in I^2C , a STOP is given. When sending numerous Read and Write commands in one communication cycle, a Repeated Start command must be used to stack them together (since a STOP will jump out of the communication window, which is not desired).

2 Memory Map

The general ProxSense[®] Memory Map is shown below.

		Table	2.1 IQS253 Memory Mapping
Address	Access	Size(Bytes)	Device Information
00H-0FH	R	16	Device information
Address	Access	Size(Bytes)	Dovice Specific Data
10H-30H	R	32	Device Specific Data
Address	Access	Size(Bytes)	Broximity Status Bytas
31H-34H	R	4	Proximity Status Bytes
Address	Access	Size(Bytes)	Touch Status Bytas
35H-38H	R	4	Touch Status Bytes
Address	Access	Size(Bytes)	Halt Bytes
39H-3CH	R	4	Halt Bytes
Address	Access	Size(Bytes)	Active Bytes (indicate cycle)
3DH-41H	R	4	Active Bytes (Indicate Cycle)
Address	Access	Size(Bytes)	Counts
42H-82H	R	64	Counts
Address	Access	Size(Bytes)	LTAs
83H-C3H	R/W	64	LIAS
Address	Access	Size(Bytes)	Device Settings
C4h-FDh	R/W	64	Device Settings


* Note 'FE' and 'FF' are reserved for other functions in communication.

2.2 IQS253 Memory Map

2.2.1 Device Information

2.2.2 Device Specific Data

10H	_	System Flags (SYSFLAGS)									
	Bit	7	6	5	4	3	2	1	0		
Access	Name		SYSTEM_	SHOW_	PROJ_	LP	ATI_	NOISE	ZOOM		
ALLESS	Name	_USE	USE	RESET	MODE		BUSY				
R											

2.2.3 Proximity Status Bytes

Γ

Г

The proximity status of all the channels on the device are shown here. These bits should not be monitored if the IC is in DYCAL mode.

Proximity Status (PROX)

Touch Status (TOUCH)

24	
-51	-
•••	

0									
	Bit	7	6	5	4	3	2	1	0
Access	Name	~	~	~	~	~	CH2	CH1	CH0
R									

2.2.4 Touch Status Bytes

The touch status of all the channels on the device are shown here. These bits should not be monitored if the IC is in DYCAL mode.

35H

5511											
	Bit	7	6	5	4	3	2	1	0		
Access	Name	Boolean_Output	~	~	~	~	CH2	CH1	CH0		
R											

2.2.5 DYCAL Touch Mode indication

36H		DYCAL TM Indication (DYCAL_TM)										
	Bit	7	6	5	4	3	2	1	0			
Access	Name	1	~	~	2	2	CH2	CH1	CH0			
R	Note		Indicates if Channel is in TM									

2.2.6 DYCAL Output indication

37H		DYCAL Output Indication (DYCAL_OUT)									
	Bit	7	6	5	4	3	2	1	0		
Access	Name	~	~	~	~	~	CH2	CH1	CH0		
R			Indicates a DYCAL detection on a channel								

2.2.7 Halt Bytes

The LTA filter halt status of all the channels are shown here.

39H		LTA Halt Status (HALT)									
	Bit	7	6	5	4	3	2	1	0		
Access	Name	~	~	~	~	~	CH2	CH1	CH0		
R											

2.2.8 Channel Number

3DH		Channel Number											
	Bit	7	6	5	4	3	2	1	0				
Access	Value				Variab	le (0-2)							
R	Note		Indicates which channels' data is currently available										

2.2.9 Counts

The Counts of the current channel is available here.

42H		Counts (CS_H)										
	Bit	7	7 6 5 4 3 2 1									
Access	Value			١	/ariable (H	HIGH byte)					
R	Note		Counts of active channel (see Channel Number)									

43H			Counts (CS_H)									
	Bit	7	7 6 5 4 3 2 1									
Access	Value	Э		,	Variable (LOW byte)					
R	Note	;	Counts of active channel (see Channel Number)									

2.2.10 Long-Term Averages

The Long-Term average of the current channel is available here to read.

83H			Long-Term Average (LTA_H)									
	Bit	7	7 6 5 4 3 2 1 0									
Access	Value			١	/ariable (H	HIGH byte	e)					
R	Note		LTA of active channel (see Channel Number)									

84H		Long-Term Average (LTA_L)										
	Bit	7	7 6 5 4 3 2 1 0									
Access	Value			١	/ariable (L	OW byte)					
R	Note		LTA of active channel (see Channel Number)									

Copyright © Azoteq All Rights Reserved

2.2.11 Device Settings

It is attempted that the commonly used settings are situated closer to the top of the memory block. Settings that are regarded as more 'once-off' are placed further down.

	5				argot Va						
C4H	Dit	7	6	1	arget va		TARGET)		0		
A	Bit	7	6			3	_	1	0		
Access	Value	4	0	AIITar	-		t real targe		0		
R/W	Default	1	0		0	0		0	0		
	Note		14	28 Decim	iai (x8 gi	ves Targe	t value = 1	024)			
C5H				CHO) Compe	ensation (COMP()				
••••	Bit	7	6	5	4	3	2	1	0		
Access	Value			•	•	-	n ATI enat				
R/W	Default		1	atomati	ouny dajo	00		5100			
1011	Default										
C6H		CH1 Compensation (COMP1)									
••••	Bit	Bit 7 6 5 4 3 2 1 0									
Access	Value		Δ		-		ATI enab		0		
R/W	Default										
	Doradit					00					
C7H				CH2	Compe	ensation (COMP2)				
0/11	Bit	7	6	5	4	3	2	1	0		
Access	Value										
R/W	Default		Automatically adjusted when ATI enabled 00								
	Delauit					00					
C8H			CH0		F and M	lultinliers	(CH0_AT	BASE)			
0011	Bit	7	6	5	4	3	2	1	0		
	Dit	CH0	-	-		MULT_		•	MULT		
Access											
R/W		DAOLI	DAOLU		ain		ale	OLNOLI	OLINOLU		
				90		50	alc				
C9H			CH1	ATI BAS	E and M	lultipliers	(CH1_AT	BASE)			
••••	Bit	7	6	5	4	3	2	1	0		
	DR	CH1				MULT_		MULT_	MULT		
Access								SENSE1			
R/W		5,021				5211020	0211022	52.1021	5211020		
САН			CH2	ATI BAS	E and M	lultipliers	(CH2_AT	BASE)			
V /11	Bit	7	6	5	4	3	2		0		
Access	Dit	CH2_	CH2_		MULT		MULT_		MULT_		
ACC633		BASE1						SENSE1			
			DAOLU						JENOLU		

R/W

СВН			Proximity Sensitivity Threshold (PROX_TH_CH0)									
	Bit	7	6	5	4	3	2	1	0			
Access	Name	PT_7	PT_6	PT_5	PT_4	PT_3	PT_2	PT_1	PT_0			
R/W	Default	0	0	0	0	0	1	0	0			

ССН	

Access	
R/W	

		Proximity Sensitivity Threshold (PROX_TH_CH1)									
Bit	7	6	5	4	3	2	1	0			
Name	PT_7	PT_6	PT_5	PT_4	PT_3	PT_2	PT_1	PT_0			
Default			0	0	0	1	0	0			

CDH	[Proximity Sensitivity Threshold (PROX_TH_CH2)									
	Bit	7	6	5	4	3	2	1	0			
Access	Name	PT_7	PT_6	PT_5	PT_4	PT_3	PT_2	PT_1	PT_0			
R/W	Default			0	0	0	1	0	0			

CEH			Touch Sensitivity Threshold (TOUCH_TH_CH0)									
	Bit	7	6	5	4	3	2	1	0			
Access	Name	TT_5	TT_5	TT_5	TT_4	TT_3	TT_2	TT_1	TT_0			
R/W	Default	0	0	1	0	0	0	0	0			
	Note		Touch THR = (value / 256 * LTA)									

CFH			Touch	Sensitiv	ity Thres	hold (TO	UCH_TH	_CH1)	
	Bit	7	6	5	4	3	2	1	0
Access	Name	TT_5	TT_5	TT_5	TT_4	TT_3	TT_2	TT_1	TT_0
R/W	Default	0	0	1	0	0	0	0	0
	Note			Touch	THR = (va	alue / 256	* LTA)		

D0H			Touch Sensitivity Threshold (TOUCH_TH_CH2)									
	Bit	7	6	5	4	3	2	1	0			
Access	Nam	ne TT_5	TT_5	TT_5	TT_4	TT_3	TT_2	TT_1	TT_0			
R/W	Defa	ult 0	0	1	0	0	0	0	0			
	Not	e		Touch	THR = (va	alue / 256	5 * LTA)					

D1H			ProxSense Module Settings 0 (PROX_SETTINGS0)								
	Bit	7	6	5	4	3	2	1	0		
Access	Value	ATI_	ATI_	10s_ATI_	REDO_	RESEED	CS_	PROJ_	PROJ_		
		OFF	PARTIAL	BLOCK	ATI		SIZE	BIAS1	BIAS0		
R/W	Default	0	0	1	0	0	1	1	1		

D2H			ProxSense Module Settings 1 (PROX_SETTINGS1)									
	Bit	7	6	5	4	3	2	1	0			
Access	Value	PROJ	ALT_ BASE	DYCAL_ TURBO	HC	ND	ND_ TRIM0	ND_ TRIM0	ND_ TRIM0			

<u>Ц</u>					Q Switc Sense [®]				zo	<u>teq</u>
R/W	D	efault	0	0	0	0	0	0	0	0

	D3H			ProxSense Module Settings 2 (PROX_SETTINGS2)									
_		Bit	7	6	5	4	3	2	1	0			
	Access	Value	ACK_	COMMS_	FORCE_	ACF_	TIME_	EVENT_	HALT1	HALT0			
			RESET	WDT_	HALT	DISABLE	OUT_	MODE _					
				DISABLE			DISABLE	DISABLE					
	R/W	Default	0 (W)	0	0	0	0	0	0	0			

D4H			Pro	oxSense M	Module Settings 3 (PROX_SETTINGS3)						
	Bit	7	6	5	4	3	2	1	0		
Access	Value	2	~	LTA_	LTA_	~	PROX_	XFER_	XFER_		
				ADAPT1	ADAPT0		DEBOUNCE	FREQ1	FREQ0		
R/W	Default	1	~	~	1	1	~	0	1		

D5H			Active Channels (ACTIVE_CHAN)									
	Bit	7	6	5	4	3	2	1	0			
Access	Value	~	~	~	~	~	CH2	CH1	CH0			
R/W	Defaul	t ~	~	~	~	~	1	1	1			

D6H			I	_ow Pow	er Setting	gs (LOW	POWER)			
	Bit	7	7 6 5 4 3 2 1								
Access	Value	LP7	LP7 LP6 LP5 LP4 LP3 LP2 LP1 LP0								
R/W	Default		Normal Power default (00H). See Note below.								
	Note	C	Custom value between 1 and 256 – value x 16ms – LP time								

NoteCustom value between 1 and $256 - value \times 16ms = LP$ timeNOTE: While in any power mode the device will zoom to Boost Power (BP) mode whenever
the counts (CS) indicate a possible proximity or touch event. This improves the response time.
The device will remain in BP for t_{ZOOM} seconds and then return to the selected power mode.
The zoom function allows reliable detection of events with counts being produced at the BP
rate.

D7H			DYCAL	Specific	Settings (SETTINGS	5)	
	Bit	7	6	5	4	3	2	1	0
Access	Value	250ms_	ALWAYS_	BETA_	BETA_	BETA_	OUTPUT_	REL_	REL_
		DELAY_	HALT_	TM_	TM_	TM_IN	ON_	THR1	THR0
		TM	DYCAL	OUT1	OUT0		TOUCH		
R/W	Default	0	0	0	0	0	0	0	0

D8H			DYCAL Channels Enable (DYCAL_CHANS)										
	Bit	7	6	5	4	3	2	1	0				
Access	Name	~	~	~	~	BLOCK_ON_CH1_ENABLE	CH2	CH1	CH0				
R/W	Default	~	~	~	~	0	1	1	1				
	Boldan	1	1	1	1	5	1 •						

D9H		EVENT MODE MASK (EVENT_MASK)								
	Bit	7	6	5	4	3	2	1	0	

<u>Қ</u>		IQ Switch [®] ProxSense [®] Series							lzo	teq		
Access	Name	~	~	ATI	DYC	CAL	BOOLE	AN NOIS	E TOUCH	H PROX		
R/W	Default	~	~	1	1		1	1	1	1		
DAH			Boolean Settings (BOOLEAN_SETTINGS)									
	Bit	7	6	5	4		3	2	1	0		
Access	Value	~	~	1	~		SOOL_	MASK_	MASK_	MASK_		
						A	ND_OR	CH2	CH1	CH0		
R/W	Default	~	~	~	~		0	0	0	0		
DBH				Boolea	an NOT	Mas	k (BOOL	EAN_NO	T)			
	Bit	7	6	5		4	3	2	1	0		
Access	Name	~	~	~		~	~	NOT_	NOT_	NOT_		
R/W	Default							CH2 0	CH1 0	CH0 0		
F\/ VV	Derault	~	~	~		~	~	U	U	U		
DDH	[DE	FAULT	CO	MMS PC	DINTER				
	Bit	7	6	5		4	3	2	1	0		
Access	Default		1	10H (B	eginning	g of [Device Sp	becific Dat	ta)	·		
R/W	t			· · · ·	<u> </u>	-	I					

2.3 Memory Map Description

2.3.1 Device Information

[00H] PROD_NR

The product number for the IQS253 is 31 (decimal).

[01H] SW_NR

The software version number of the device ROM can be read in this byte. The Engineering version numbers are shown below.

IQS253 sw nr	Description						
13 (decimal)	IQS253 - 3 Channel Self Capacitive Sensor version 1						
14 (decimal)	IQS253 - 3 Channel Projected Sensor version 1						

2.3.2 Device Specific Data

[10H] SYSFLAGS

Bit 7: SYSTEM_USE

0 = No reset has occurred since last cleared

1 = Reset has occurred

- Bit 6: SYSTEM_USE
- *Bit 5:* **SHOW_RESET:** This bit can be read to determine whether a reset occurred on the device since the **ACK_RESET** bit has been set. The value of **SHOW_RESET** can be set to '0' by writing a '1' in the **ACK_RESET** bit in the **PROX_SETTINGS_2** byte.
- Bit 4: **PROJ_MODE:** Capacitive Sensing Technology used
 - 0 = Self Capacitive sensing

<u>Қ</u>	IQ Switch [®] ProxSense [®] Series
	1 = Projected Capacitive sensing
Bit 3:	<i>LP:</i> If a LP mode is enabled, this bit indicates that charging is currently occurring in a LP rate.
	0 = Full-speed charging
	1 = Charging currently occur at a lower rate
Bit 2:	ATI_BUSY: Status of automated ATI routine
	0 = Auto ATI is not busy
	1 = Auto ATI in progress
Bit 1:	NOISE: This bit indicates the presence of noise interference.
	0 = IC has not detected the presence of noise
	1 = IC has detected the presence of noise
Bit 0:	ZOOM: Zoom will indicate full-speed charging once an undebounced proximity is detected. In NP mode, this will not change the charging frequency.
	0 = IC not zoomed in
	1 = IC detected undebounced proximity and IC is charging at full-speed
2.3.3	Proximity Status Bytes

[31H] PROX

The proximity status of the channels is indicated in this byte. The PROX bit of a channel should not be used if a channel is set as a DYCAL channel.

Bit 7-3:	Unused
Bit 2:	CH2: Indicate that a proximity event has been detected on CH2
	0 = No proximity event detected
	1 = Proximity event detected
Bit 1:	CH1: Indicate that a proximity event has been detected on CH1
	0 = No proximity event detected
	1 = Proximity event detected
Bit 0:	CH0: Indicate that a proximity event has been detected on CH0
	0 = No proximity event detected

1 = Proximity event detected

2.3.4 Touch Status Bytes

[35H] TOUCH

The touch status of the channels is indicated in this byte. The TOUCH bit of a channel should not be used if a channel is set as a DYCAL channel.

Bit 7: **BOOLEAN_OUTPUT:** A Boolean combination can be outputted to this bit. The Boolean combination can be configured through bytes BOOLEAN_SETTINGS and BOOLEAN_NOT. This bit will correspond with the output status of the B_OUT pin of the IQS253 Self capacitive IC.

<u>Ц</u>	IQ Switch [®] ProxSense [®] Series
	0 = Boolean Output not active
	1 = Boolean Output active
Bit 6-3:	Unused
Bit 2:	CH2: Indicate that a touch event has been detected on CH2
	0 = No touch event detected
	1 = Touch event detected
Bit 1:	CH1: Indicate that a touch event has been detected on CH1
	0 = No touch event detected
	1 = Touch event detected
Bit 0:	CH0: Indicate that a touch event has been detected on CH0
	0 = No touch event detected

1 = Touch event detected

2.3.5 DYCAL Touch Mode Indication

[36H] DYCAL_TM

If a channel is configured as a DYCAL channel, these bits will indicate whether TM has been entered. TM is entered once the touch threshold of a channel has been exceeded.

Bit 7-3:	Unused	
Bit 2:	CH2: CH2 TM indication	
	0 = Channel not in TM	
	1 = Channel in TM	
Bit 1:	CH1: CH1 TM indication	
	0 = Channel not in TM	
	1 = Channel in TM	
Bit 0:	CH0: CH0 TM indication	
	0 = Channel not in TM	

1 = Channel in TM

2.3.6 DYCAL Output Indication

[37H] DYCAL_OUT

If a channel is configured as a DYCAL channel, these bits will indicate whether the DYCAL output is set. It will default be set with the detection of a proximity, but can be set by a touch by configuring bit **DYCAL_SETTINGS:OUTPUT_ON_TOUCH**.

Bit 7-3:	Unused	
Bit 2:	CH2: CH2 DYCAL output	
	0 = DYCAL not detected	
	1 = DYCAL detected	
Bit 1:	CH1: CH1 DYCAL output	

- 0 = DYCAL not detected
- 1 = DYCAL detected

Bit 0: CH0: CH0 DYCAL output

0 = DYCAL not detected

1 = DYCAL detected

2.3.7 Halt Bytes

<u>/39H] HALT</u>

Indicate the halting state of each channels Long Term Average (LTA). If in non-TM, the halt bit of a channel will be set once proximity is detected. Once a touch is detected, the IC will enter TM and the halt bit will be cleared. The halting bit will now only be set again if the CS exceeds the LTA by 16 in Self or if the CS is less than the LTA by more than 16 in Projected mode.

Bit 7-3:	Unused
Bit 2:	CH2: CH2 LTA halting state
	0 = Channels LTA adapts to the environment
	1 = Channels LTA halted
Bit 1:	CH1: CH1 halting state
	0 = Channels LTA adapts to the environment
	1 = Channels LTA halted
Bit 0:	CH0: CH0 halting state
	0 = Channels LTA adapts to the environment
	1 = Channels LTA halted

2.3.8 Current Channel

[3DH] CHAN_NUM

The channel number that can be read in this byte indicates which channels' data is currently available.

2.3.9 Counts (CS)

[42H & 43H] CS_H & CS_L

The counts for the current channel can be read in this byte. The HIGH byte and LOW byte are found in consecutive addresses.

2.3.10 Long-Term Average

[83H & 84H] LTA_H & LTA_L

The LTA value for the current channel can be read in this byte. The HIGH byte and LOW byte are found in consecutive addresses.

2.3.11 Device Settings

The settings contained in this section can be configured by the user.

[C4H] ATI_TARGET

The automated ATI target can be set in this byte. The value written to this byte multiplied by 8 will be the target value of all 3 channels.

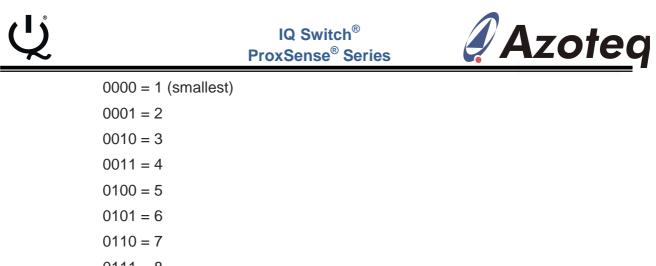
If a new target value is required, the required target (divided by 8) should be written to this byte, where-after a re-ATI event should be sent. All 3 channels will now be at the target value once the SYSFLAGS_ATI_BUSY flag is cleared.

ATI Multiplier and Compensation

The ATI Multiplier and ATI Compensation bits allow the controller to be compatible with a large range of sensors, and in many applications with different environments. ATI allows the user to maintain a specific sample value on all channels. The ATI Multiplier parameters would produce the largest changes in sample values and can be thought of as the high bits of ATI. The ATI Compensation bits are used to influence the sample values on a smaller scale to provide precision when balancing all channels as close as possible to the target. The ATI Multiplier parameters are further grouped into two parameters namely ATI Multiplier-Compensation consists of 2 bits and has the biggest effect on the sample value and can be considered as the highest bit of the ATI parameters.

The ATI Multiplier-Sensitivity can be adjusted with 4 bits for each channel. The value of '1111' would provide the highest CS value and the value of '0000' would provide the lowest.

[C5H, C6H, C7H] Compensation settings (CH0_COMP, CH1_COMP, CH2_COMP)


The compensation settings for each channel are contained in these bytes. The values in these bytes are automatically determined if the Auto ATI function was used. If PROX_SETTINGS0:ATI_OFF is set, the Automatic ATI setting is disabled and this byte can be altered to achieve a custom target value.

The ATI Compensation parameter can be configured for each channel in a range between 0-255 (decimal). The ATI compensation bits can be used to make small adjustments of the sample values of the individual channels.

[C5H, C6H, C7H] Base values and Multiplier settings (CH0_BASE, CH1_BASE, CH2_BASE)

The base value or Multiplier settings of each channel can be set in these bytes.

Bit 7-6:	CHx_BASE1:CHx_BASE0: Channel base values	
	$(ALT_BASE = 0)$	$(ALT_BASE = 1)$
	00 = 200	00 = 150
	01 = 50	01 = 350
	10 = 100	10 = 500
	11 = 250	11 = 700
Bit 5-4:	MULT_COMP1:MULT_COMP0: N	Aultiplier Compensation setting.
	00 = 1:1 (smallest)	
	01 = 3:1	
	10 = 1:3	
	11 = 1:9	
Bit 3-0:	MULT_SENSE3:MULT_SENSE0	: Multiplier Sensitivity setting

[CBH, CCH, CDH] Proximity Sensitivity Settings (PROX_TH_CHx)

Proximity sensitivity thresholds can be anything from 1 to 64.

[CEH, CFH, D0H]Touch Sensitivity Settings (TOUCH_TH_CHx)

Touch sensitivity thresholds are calculated as a fraction of the LTA:

Touch THR = (TOUCH_THR_CHx / 256 * LTA).

There are 256 possible touch threshold values.

[D1H] PROX_SETTINGS0

Bit 7: **AUTO_ATI:** Enable the automated ATI routine. By enabling this bit, the device will perform an automated ATI routine on all channels if the channels target values are outside their boundaries¹.

0 = No action

1 = Auto ATI routine active

Bit 6: ATI_PARTIAL: Enable Partial ATI.

0 = If ATI occur, it will use the base values as reference

1 = If ATI occur, it will use the MULTIPLIER_COMPx and MULTIPLIER_SENSx as reference

Bit 5: ATI_BLOCK: Enable the 10 second block of ATI after an actuation.

¹ The boundaries for the AUTO_ATI routine = Target value / 8.

Ŕ	IQ Switch [®] ProxSense [®] Series
	0 = Channels will always redo ATI if LTA is outside boundaries if no actuation is detected
	1 = ATI will be blocked for 10 seconds after an actuation has occurred.
Bit 4:	REDO_AUTO_ATI: Force the ATI routine to perform. The last written ATI_TARGET value will be used as target.
	0 = No action
	1 = Force ATI routine to perform.
Bit 3:	RESEED: Reseed the LTA filter. This can be used to adapt to an abrupt environment change, where the filter is too slow to track this change. Note that with the Short and Long Halt selections, an automatic Reseed will be performed when the halt time has expired, thus automatically adjusting to the new surroundings.
	0 : Do not reseed
	1 : Reseed (this is a global reseed)
Bit 2:	CS: Set the size of the internal sampling capacitor. A larger CS capacitor requires more transfers (higher counts) to be charged.
	0 = 29.9 pF
	1 = 59.8pF
Bit 1-0:	PROJ_BIAS1:PROJ_BIAS0: Projected Bias Current ²
	00 = 1.25uA (smallest)
	01 = 2.5uA
	10 = 5uA
	11 = 10uA
[D2] PROX	_SETTINGS1
Bit 7:	PROJ: Use the IQS253 in projected mode. This setting can only be enabled in the SETUP communications window.
	0 : IQS253 in Self Capacitive sensing mode
	1 : IQS253 in Projected Capacitive sensing mode
Bit 6:	ALT_BASE: Set this bit to choose the alternative base values
	0 : Normal base values
	1 : Alternative base values
Bit 5:	DYCAL_TURBO: Enable the DYCAL Turbo functionality. By enabling this bit, the device will drastically decrease the time to detect users' proximity and touch events.
	0 = Normal DYCAL
	1 = Enable DYCAL Turbo

² Only applicable if IC is in projected mode. See datasheet for explanation.

<u>Қ</u>	IQ Switch [®] ProxSense [®] Series
Bit 4:	<i>HC</i> : Halt charges. The device will not perform capacitive sensing charge transfers and thus not be able to detect any user events.
	0 = Charge transfers occur normally
	1 = No charge transfers occur
Bit 3:	ND: Noise Detection Enable. This setting is used to enable the on-chip noise
Dir o.	detection circuitry. With noise detected, the noise affected samples will be ignored, and have no effect on the Prox, touch or LTA calculations. The NOISE bit will appropriately be set as indication of the noise status.
	0 = Disable noise detection
	1 = Enable noise detection
Bit 2-0:	ND_TRIM2:ND_TRIM0: ND Trim values
	000 = 19.1mV
	001 = 9.65mV
	010 = 0 mV
	011 = -10mV
	100 = -19.1mV
	101 = -29.8mV
	110 = -40.9mV
	111 = -57.4mV
[D3H] PRO)	<u>CSETTINGS2</u>
Bit 7:	ACK_RESET: Acknowledge 'SHOW_RESET'.
	0 = Nothing
	1 = Clear the SHOW_RESET flag (send only once)
Bit 6:	WDT_DISABLE: Device watchdog timer (WDT) disable.
	0 = Enabled
	1 = Disabled
Bit 5:	FORCE_HALT: The LTA is halted by setting this bit. It will only be allowed to adapt to the environment once it is cleared.
	0 : LTA adapts to environment until actuation detected.
	1 : Halt LTA.
Bit 4:	ACF_DISABLE: Disable the AC Filter employed on the Counts (CS).
	0 = Enable AC filter.
	1 = Disable AC filter.
Bit 3:	TIME_OUT_DISABLE: Enable I ² C communication timeout. This bit will enable the IC to resume charge transfers if communication does not commence within 20ms of the RDY indicating that data is ready.
	0 = Disable time-out.

- 1 = Enable time-out.
- *Bit 2:* **EVENT_MODE_DISABLE:** Enable the IC to stream data continuously.

 $0 = I^2C$ Communication will only occur if an event occur (events defined in EVENT_MODE_MASK byte)

1 = Continuous streaming mode

Bit 1-0: HALT1:HALT0: LTA halt timings.

00 = 20s

01 = 40s

10 = Never

11 = Always

[D4H] PROX_SETTINGS3

Bit 7-6: Unused

Bit 5-4: **LTA_ADAPT:** Rate at which LTA adapts to CS when no actuation is detected (non-TM mode).

00 = 3.13% (fastest)

01 = 1.56%

10 = 0.78%

11 = 0.39% (slowest)

- Bit 3: Unused
- *Bit 2:* **PROX_DEBOUNCE:** Number of consecutive CS samples required exceeding proximity threshold to detect a proximity event.

0 = 6

1 = 4

Bit 1-0: **XFER_FREQ1:XFER_FREQ0:** Charge transfer frequency.

00 = 1MHz

01 = 500kHz

10 = 250kHz

11 = 125kHz

The charge transfer frequency is a very important parameter. Dependant on the design application, the device frequency must be optimised. For example, if keys are to be used in an environment where steam or water droplets could form on the keys, a higher transfer frequency improves immunity. Also, if a sensor electrode is a very large object/size, then a slower frequency must be selected since the capacitance of the sensor is large, and a slower frequency is required to allow effective capacitive sensing on the sensor.

[D5H] ACTIVE_CHAN

Each channel can be individually disabled in this register.

Bit 7-3: Unused

<u>С</u>	IQ Switch [®] ProxSense [®] Series	Azoteq
Bit 2:	CH2: Setting this bit will disable the channel	
	0 = Active / Charging	
	1 = Inactive / Not charging	
Bit 1:	CH1: Setting this bit will disable the channel	
	0 = Active / Charging	
	1 = Inactive / Not charging	
Bit 0:	CH0: Setting this bit will disable the channel	
	0 = Active / Charging	
	1 = Inactive / Not charging	

[D6H] LP PERIOD

Byte indicates the sleep time between a burst of conversions. Default (00H), a channel is charged every 27ms. The LP time can be set to any custom value between 1 and 256. The time between the conversions will then be the 'value' x 16ms. (NOTE: CX2 does a dummy conversion before the burst of the active channels are executed.)

[D7H] DYCAL_SETTINGS

Byte indicates which channels are actively charged.

Bit 7:	250ms_DELAY_TM: A 250ms delay is applied on the LTA when a touch is detected, before the LTA is reseeded to the LTA-TOUCH_THR
	0 = Enabled
	1 = Disabled
Bit 6:	ALWAYS_HALT_DYCAL: Always halt LTA in TM if CS exceeds LTA by 16 (Self) or if CS is lower than LTA by 16 (projected)
	0 = Halting of LTA in TM according to HALT1:HALT0 settings
	1 = Always halt LTA if above condition is met
Bit 5-4:	LTA_ADAPT_IN: Rate at which LTA adapts after reseed when heading towards the CS in TM
	00 = 1.56%
	01 = 6.25% (fastest)
	10 = 3.13%
	11 = 0.78% (slowest)
Bit 3:	LTA_ADAPT_OUT: Rate at which LTA adapts after it's reached CS, when CS is heading out of TM.
	0 = 0.10% (fastest)
	1 = 0.01% (slowest)
Bit 2:	OUTPUT_ON_TOUCH: Setting this bit will enable the DYCAL output to change with touch actuation.
	0 = DYCAL on Proximity

- 1 = DYCAL on Touch
- *Bit 1-0:* **RELEASE_THR1:RELEASE_THR0:** Release threshold with which CS should exceed LTA for LTA to reseed back to non-TM.

00 = 75% 01 = 50% 10 = 87.5%

11 = 100%

[D8H] DYCAL enable and Block channel enable (DYCAL_CHANS)

Channels are default configured as DYCAL channels. Clearing a channel bit, will make it a direct output channel.

Bit 7-4:	Unused
Bit 3:	CH1_BLOCK: Setting this bit will make channel 1 a block channel
	0 = Normal output
	1 = CH1 will block the output of the other channels if actuated
Bit 2:	CH2: Clearing this bit, will make the channel a direct output channel
	0 = Direct Output channel
	1 = DYCAL channel
Bit 1:	CH1: Clearing this bit, will make the channel a direct output channel
	0 = Direct Output channel
	1 = DYCAL channel
Bit 0:	CH0: Clearing this bit, will make the channel a direct output channel
	0 = Direct Output channel
	1 = DYCAL channel
[D9H] Event	Mode mask (EVENT MASK)
Bit 7-6:	Unused
Bit 5:	ATI: A communication event will occur if an ATI or re-ATI occurs.
	0 = Communication event will not occur
	1 = Communication event will occur
Bit 4:	DYCAL: A communication event will occur if a DYCAL state change occurs.
	0 = Communication event will not occur
	1 = Communication event will occur
Bit 3:	BOOLEAN: A communication event will occur if a Boolean state change occurs.
	0 = Communication event will not occur
	1 = Communication event will occur
Bit 2:	NOISE: A communication event will occur if noise is detected.
	0 = Communication event will not occur

<u>С</u>	IQ Switch [®] ProxSense [®] Series
	1 = Communication event will occur
Bit 1:	TOUCH: A communication event will occur if a proximity state change occurs. Should only be used if a channel is in direct mode.
	0 = Communication event will not occur
	1 = Communication event will occur
Bit 0:	PROXIMITY: A communication event will occur if a proximity state change occurs. Should only be used if a channel is in direct mode.
	0 = Communication event will not occur
	1 = Communication event will occur
<u>[DAH] BOO</u>	LEAN_SETTINGS
Bit 7-4:	Unused
Bit 3:	BOOLEAN_AND_OR: Boolean AND operation on the channels chosen to perform this action on
	0 = Boolean AND operation
	1 = Boolean OR operation
Bit 2:	CH2: Use this channel in the Boolean operation
	0 = No
	1 = Yes
Bit 1:	CH1 Use this channel in the Boolean operation
	0 = No
	1 = Yes
Bit 0:	CH0 Use this channel in the Boolean operation
	0 = No
	1 = Yes
[DBH] BOO	LEAN_NOT
Bit 7-3:	Unused
Bit 2:	CH2: Invert this channels polarity (NOT operation)
	0 = No action
	1 = NOT Channel (Invert channel polarity)
Bit 1:	CH1: Invert this channels polarity (NOT operation)
	0 = No action
	1 = NOT Channel (Invert channel polarity)
Bit 0:	CH0: Invert this channels polarity (NOT operation)
	0 = No action
	1 = NOT Channel (Invert channel polarity)

[DDH] Default Comms Pointer

The value stored in this register will be loaded into the Comms Pointer at the start of a communication window. For example, if the design only requires the Proximity Status information each cycle, then the *Default Comms Pointer* can be set to ADDRESS '31H'. This would mean that at the start of each communication window, the comms pointer would already be set to the Proximity Status register, simply allowing a READ to retrieve the data, without the need of setting up the address.

3 General Implementation hints

When implementing the communication interface with the IQS253, please refer to the IQS253 datasheet for a detailed description of the I²C communication. This section contains some general guidelines and hints regarding the communication interface.

3.1 I²C Communication window

When communicating via I^2C , the communication window will automatically close when a STOP bit is received by the IQS253. The IQS253 will then proceed to start with a new conversion and the READY line will be pulled low until the new conversion is complete.

Note that there is no command via l^2C to initiate a new conversion. To perform multiple read and write commands, the repeated start function of the l^2C must be used to stack the commands together.

3.2 Startup Procedure

After sending initial settings to the IQS253, it is important to execute a reseed. It is suggested to execute an estimated 24 conversions after initial settings before calling for a reseed, to allow the system to stabilize.

3.3 General I²C Hints

3.3.1 I²C Pull-up resistors

When implementing I^2C it is important to remember the pull-up resistors on the data and clock lines. $4.7k\Omega$ is recommended, but for lower clock speeds bigger pull-ups will reduce power consumption.

3.3.2 Reset Device while using I²C

When a reset occurs, some care needs to be taken to ensure that the IQS253 restarts correctly. The reset pin needs to be LOW before the IQS253 can be initialised, else the master will read a ready signal prematurely. To accomplish this without any delays, define the ready pin on the master as an output and pull it LOW. Then, redefine it as an input line just before initializing the IQS253.

Please visit www.azoteq.com for a full portfolio of the ProxSense[™] Capacitive Sensors, Datasheets, Application Notes and Evaluation Kits available. ProxSenseSupport@azoteq.com