

IQS316 Design Guide

IQ Switch
®
 - ProxSense

®
 Series

Multi-channel Integrated Proximity Sensor with Micro-Processor Core

This design guide provides a description of the communication interface between the master and

the IQS316 controller. The Memory Map of the IQS316 is provided in this document, followed by a

description of each register and instruction. The IQS316 communicates in I2C or SPI mode, both

using a Memory Mapped structure. The last section of this document is dedicated to an example

implementation and provides example code.

Contents

IQS316 Design Guide .. 1

1 Memory Map ... 4

1.1 General Memory Map Structure ... 4

1.2 IQS316 Memory Map .. 5
1.2.1 Device Information ... 5
1.2.2 Device Specific Data .. 6
1.2.3 Proximity Status Bytes .. 6
1.2.4 Touch Status Bytes .. 6
1.2.5 Halt Bytes .. 7
1.2.6 Active Bytes ... 7
1.2.7 Current Samples .. 7
1.2.8 Long-Term Averages and Thresholds .. 9
1.2.9 Device Settings .. 11

1.3 Memory Map Description.. 18
1.3.1 Device Information ... 18
1.3.2 Device Specific Data .. 18
1.3.3 Proximity Status Bytes .. 19
1.3.4 Touch Status Bytes .. 19
1.3.5 Halt Bytes .. 19
1.3.6 Active Bytes ... 19
1.3.7 Current Samples .. 19
1.3.8 Long-Term Averages & Touch/Prox Thresholds ... 20
1.3.9 Device Settings .. 21

2 General Implementation hints .. 29

2.1 Communication window .. 29
2.1.1 SPI Communication window ... 29
2.1.2 I

2
C Communication window.. 29

2.2 Startup Procedure ... 29
2.2.1 Individual Prox and Touch Thresholds .. 30
2.2.2 Auto ATI Procedure ... 30
2.2.3 Post Setup ... 30

2.3 General I
2
C Hints ... 31

2.3.1 I
2
C Pull-up resistors ... 31

2.3.2 MCLR ... 31
2.3.3 Reset Device while using I

2
C ... 31

3 Sample implementation .. 31

3.1 Overview.. 31
3.1.1 Communications: .. 31

3.2 Functions ... 33
3.2.1 IQS316_Settings .. 33
3.2.2 IQS316_Refresh_Data ... 38
3.2.3 IQS316_Process_Data ... 39
3.2.4 Main Function (I

2
C and SPI) .. 40

3.2.5 Comms_init ... 41
3.2.6 IQS316_Read ... 41
3.2.7 IQS316_ReadCurrentAddress ... 43

3.2.8 IQS316_Write .. 44
3.2.9 IQS316_End_Comms_Window ... 45
3.2.10 Comms_Error .. 46
3.2.11 I

2
C byte write .. 46

3.2.12 Read with NACK .. 47
3.2.13 Read with ACK .. 47
3.2.14 I

2
C START .. 48

3.2.15 I
2
C STOP .. 48

3.2.16 SPI Receive/Transmit .. 48
3.2.17 Constant Declarations .. 49

1 Memory Map

1.1 General Memory Map Structure

A general I2C and SPI Memory Map is defined so that all ProxSense® devices can use a standard
framework. The general mapping is shown below.

Table 1.1 IQS316 Memory Mapping

Address Access Size(Bytes)
Device Information

00H-0FH R 16

Address Access Size(Bytes)
Device Specific Data

10H-30H R 32

Address Access Size(Bytes)
Proximity Status Bytes

31H-34H R 4

Address Access Size(Bytes)
Touch Status Bytes

35H-38H R 4

Address Access Size(Bytes)

Halt Bytes
39H-
3CH

R 4

Address Access Size(Bytes)

Active Bytes (indicate cycle)
3DH-
41H

R 4

Address Access Size(Bytes)
Current Samples

42H-82H R 64

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 5 of 54

All Rights Reserved. Revision 0.04 December 2013

Address Access Size(Bytes)

LTAs
83H-
C3H

R/W 64

Address Access Size(Bytes)

Device Settings
C4h-
FDh

R/W 64

* Note „FE‟ and „FF‟ are reserved for other functions in communication.

1.2 IQS316 Memory Map

1.2.1 Device Information

Address Product Number

00H Bit 7 6 5 4 3 2 1 0

Access Value 27 (Decimal)

R

Address Version Number

01H Bit 7 6 5 4 3 2 1 0

Access Value Variable

R

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 6 of 54

All Rights Reserved. Revision 0.04 December 2013

1.2.2 Device Specific Data

Address XY Info 1 (UI_FLAGS0)

10H Bit 7 6 5 4 3 2 1 0

Access Value SHOW_RESET MODE_INDICATOR ~ ~ ~ ATI_BUSY RESEED_BUSY NOISE

R

1.2.3 Proximity Status Bytes

Only the proximity status of the channels relating to the current group is available here.

Address Proximity Status (Group dependant)

31H Bit 7 6 5 4 3 2 1 0

Access Name If Group = 0 CH3 CH2 CH1 CH0

R Name If Group = 1 CH7 CH6 CH5 CH4

 Name If Group = 2 CH11 CH10 CH9 CH8

 Name If Group = 3 CH15 CH14 CH13 CH12

 Name If Group = 4 CH19 CH18 CH17 CH16

1.2.4 Touch Status Bytes

Only the touch status of the channels relating to the current group is available here.

Address Touch Status (Group dependant)

35H Bit 7 6 5 4 3 2 1 0

Access Name If Group = 0 ~ ~ ~ ~

R Name If Group = 1 CH7 CH6 CH5 CH4

 Name If Group = 2 CH11 CH10 CH9 CH8

 Name If Group = 3 CH15 CH14 CH13 CH12

 Name If Group = 4 CH19 CH18 CH17 CH16

*Note: This byte is not used for Group 0 (Prox Mode)

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 7 of 54

All Rights Reserved. Revision 0.04 December 2013

1.2.5 Halt Bytes

Only the filter halt status of the channels relating to the current group is available here.

Address Halt Status (Group dependant)

39H Bit 7 6 5 4 3 2 1 0

Access Name If Group = 0 CH3 CH2 CH1 CH0

R Name If Group = 1 CH7 CH6 CH5 CH4

 Name If Group = 2 CH11 CH10 CH9 CH8

 Name If Group = 3 CH15 CH14 CH13 CH12

 Name If Group = 4 CH19 CH18 CH17 CH16

1.2.6 Active Bytes

The group number is given here.

Address Group Number

3DH Bit 7 6 5 4 3 2 1 0

Access Value Variable (0-4)

R Note Indicates which group‟s data is currently available

1.2.7 Current Samples

The Current Samples of the current group are available here.

Address Current Sample CH0 / CH4 / CH8 / CH12 / CH16

42H Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH byte)

R Note CH0 (Group0) / CH4 (Group1) / CH8 (Group2) /
CH12 (Group3) / CH16 (Group4)

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 8 of 54

All Rights Reserved. Revision 0.04 December 2013

Address Current Sample CH0 / CH4 / CH8 / CH12 / CH16

43H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R Note CH0 (Group0) / CH4 (Group1) / CH8 (Group2) /
CH12 (Group3) / CH16 (Group4)

Address Current Sample CH1 / CH5 / CH9 / CH13 / CH17

44H Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH byte)

R Note CH1 (Group0) / CH5 (Group1) / CH9 (Group2) /
CH13 (Group3) / CH17 (Group4)

Address Current Sample CH1 / CH5 / CH9 / CH13 / CH17

45H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R Note CH1 (Group0) / CH5 (Group1) / CH9 (Group2) /
CH13 (Group3) / CH17 (Group4)

Address Current Sample CH2 / CH6 / CH10 / CH14 / CH18

46H Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH byte)

R Note CH2 (Group0) / CH6 (Group1) / CH10 (Group2) /
CH14 (Group3) / CH18 (Group4)

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 9 of 54

All Rights Reserved. Revision 0.04 December 2013

Address Current Sample CH2 / CH6 / CH10 / CH14 / CH18

47H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R Note CH2 (Group0) / CH6 (Group1) / CH10 (Group2) /
CH14 (Group3) / CH18 (Group4)

Address Current Sample CH3 / CH7 / CH11 / CH15 / CH19

48H Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH byte)

R Note CH3 (Group0) / CH7 (Group1) / CH11 (Group2) /
CH15 (Group3) / CH19 (Group4)

Address Current Sample CH3 / CH7 / CH11 / CH15 / CH19

49H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R Note CH3 (Group0) / CH7 (Group1) / CH11 (Group2) /
CH15 (Group3) / CH19 (Group4)

1.2.8 Long-Term Averages and Thresholds

The Long-Term averages, and each individual channels thresholds, of the current group are
available here to read AND overwrite.

Address Long-Term Average CH0 / CH4 / CH8 / CH12 / CH16

83H Bit 7 6 5 4 3 2 1 0

 Value Touch Threshold Prox Threshold Variable (HIGH byte)

Access Default 0 0 0 0

R/W Note CH0 (Group0) / CH4 (Group1) / CH8 (Group2) /
CH12 (Group3) / CH16 (Group4)

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 10 of 54

All Rights Reserved. Revision 0.04 December 2013

Address Long-Term Average CH0 / CH4 / CH8 / CH12 / CH16

84H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R/W Note CH0 (Group0) / CH4 (Group1) / CH8 (Group2) /
CH12 (Group3) / CH16 (Group4)

Address Long-Term Average CH1 / CH5 / CH9 / CH13 / CH17

85H Bit 7 6 5 4 3 2 1 0

 Value Touch Threshold Prox Threshold Variable (HIGH byte)

Access Default 0 0 0 0

R/W Note CH1 (Group0) / CH5 (Group1) / CH9 (Group2) /
CH13 (Group3) / CH17 (Group4)

Address Long-Term Average CH1 / CH5 / CH9 / CH13 / CH17

86H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R/W Note CH1 (Group0) / CH5 (Group1) / CH9 (Group2) /
CH13 (Group3) / CH17 (Group4)

Address Long-Term Average CH2 / CH6 / CH10 / CH14 / CH18

87H Bit 7 6 5 4 3 2 1 0

 Value Touch Threshold Prox Threshold Variable (HIGH byte)

Access Default 0 0 0 0

R/W Note CH2 (Group0) / CH6 (Group1) / CH10 (Group2) /
CH14 (Group3) / CH18 (Group4)

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 11 of 54

All Rights Reserved. Revision 0.04 December 2013

Address Long-Term Average CH2 / CH6 / CH10 / CH14 / CH18

88H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R/W Note CH2 (Group0) / CH6 (Group1) / CH10 (Group2) /
CH14 (Group3) / CH18 (Group4)

Address Long-Term Average CH3 / CH7 / CH11 / CH15 / CH19

89H Bit 7 6 5 4 3 2 1 0

 Value Touch Threshold Prox Threshold Variable (HIGH byte)

Access Default 0 0 0 0

R/W Note CH3 (Group0) / CH7 (Group1) / CH11 (Group2) /
CH15 (Group3) / CH19 (Group4)

Address Long-Term Average CH3 / CH7 / CH11 / CH15 / CH19

8AH Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R/W Note CH3 (Group0) / CH7 (Group1) / CH11 (Group2) /
CH15 (Group3) / CH19 (Group4)

1.2.9 Device Settings

An attempt is made so that the commonly used settings are situated closer to the top of the
memory block. Settings that are regarded as more „once-off‟ are placed further down.

Address UI Settings 0 (UI_SETTINGS0)

C4H Bit 7 6 5 4 3 2 1 0

Access Name RESEED ATI_MODE PROX
RANGE

TOUCH
RANGE

FORCE
PROX
MODE

FORCE
TOUCH
MODE

ND 0

R/W Default 0 0 1 0 0 0 1 0

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 12 of 54

All Rights Reserved. Revision 0.04 December 2013

Address Power Settings (POWER_SETTINGS)

C5H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ SLEEP MAIN_OSC LP1 LP0

R/W Default ~ ~ ~ ~ 0 0 0 0

Address ProxSense® Module Settings 1 (PROX_SETTINGS_1)

C6H Bit 7 6 5 4 3 2 1 0

Access Name CXVSS ZC_EN HALT1 HALT0 AUTO_
ATI

CXDIV2 CXDIV1 CXDIV0

R/W Default 1 0 0 1 0 0 1 0

Address ProxSense® Module Settings 2 (PROX_SETTINGS_2)

C7H Bit 7 6 5 4 3 2 1 0

Access Name ~ SHIELD_
EN

STOP_
COMMS

ACK_
RESET

SKIP_
CONV

ACF_
DISABLE

LTN_
DISABLE

WDT_
DISABLE

R/W Default ~ 0 0 0 0 0 0Note 1 1

Note1: The LTN filter has a limitation: it is default ON, but it is recommended that this feature
be disabled by the user (setting the bit).

Address ATI Multiplier C (ATI_MULT1)

C8H Bit 7 6 5 4 3 2 1 0

Access Name If Group = 0 CH3 CH2 CH1 CH0

R/W If Group = 1 CH7 CH6 CH5 CH4

 If Group = 2 CH11 CH10 CH9 CH8

 If Group = 3 CH15 CH14 CH13 CH12

 If Group = 4 CH19 CH18 CH17 CH16

 Default 0 0 0 0 0 0 0 0

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 13 of 54

All Rights Reserved. Revision 0.04 December 2013

Address ATI Multiplier I (ATI_MULT2)

C9H Bit 7 6 5 4 3 2 1 0

Access Name CH3 CH2 CH1 CH0 If Group = 0

R/W CH7 CH6 CH5 CH4 If Group = 1

 CH11 CH10 CH9 CH8 If Group = 2

 CH15 CH14 CH13 CH12 If Group = 3

 CH19 CH18 CH17 CH16 If Group = 4

 Default 0 0 0 0 ~ ~ ~ ~

Address ATI Compensation Setting (ATI_C0)

CAH Bit 7 6 5 4 3 2 1 0

Access Value If Group = 0 CH0

R/W If Group = 1 CH4

 If Group = 2 CH8

 If Group = 3 CH12

 If Group = 4 CH16

Address ATI Compensation Setting (ATI_C1)

CBH Bit 7 6 5 4 3 2 1 0

Access Value If Group = 0 CH1

R/W If Group = 1 CH5

 If Group = 2 CH9

 If Group = 3 CH13

 If Group = 4 CH17

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 14 of 54

All Rights Reserved. Revision 0.04 December 2013

Address ATI Compensation Setting (ATI_C2)

CCH Bit 7 6 5 4 3 2 1 0

Access Value If Group = 0 CH2

R/W If Group = 1 CH6

 If Group = 2 CH10

 If Group = 3 CH14

 If Group = 4 CH18

Address ATI Compensation Setting (ATI_C3)

CDH Bit 7 6 5 4 3 2 1 0

Access Value If Group = 0 CH3

R/W If Group = 1 CH7

 If Group = 2 CH11

 If Group = 3 CH15

 If Group = 4 CH19

Address Shield Settings (SHLD_SETTINGS)

CEH Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ ~ SHLD2 SHLD1 SHLD0

R/W Default 0 0 0 0 0 0 0 0

* Note this byte will be ignored if SHIELD_EN (PROX_SETTINGS_2<6>) is set (i.e. if
automated shield is selected).

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 15 of 54

All Rights Reserved. Revision 0.04 December 2013

Address Unused (keep 00H)

CFH Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ 0 0 0 0 0 0

R/W Default ~ ~ 0 0 0 0 0 0

Address Cx Configuration (CX_CONFIG)

D0H Bit 7 6 5 4 3 2 1 0

Access Name CX_GPIO_1 CX_GPIO_0 ~ ~ Prox Mode Group Selection (PM_CX_SELECT)

GROUP4 GROUP3 GROUP2 GROUP1

R/W Default 0 0 ~ ~ 1 1 1 1

Address DEFAULT_COMMS_POINTER

D1H Bit 7 6 5 4 3 2 1 0

Access Default 10H (Beginning of Device Specific Data)

R/W

Address Individual Channel Disable (CHAN_ACTIVE0)

D2H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH3 CH2 CH1 CH0

R/W Default ~ ~ ~ ~ 0 0 1 1

*Note: Only group 0 and 1 are default on, this is because with more than 2 channels active,
the AC Filter isn‟t sampled at the optimal frequency, and is thus less effective.

Address Individual Channel Disable (CHAN_ACTIVE1)

D3H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH7 CH6 CH5 CH4

R/W Default ~ ~ ~ ~ 1 1 1 1

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 16 of 54

All Rights Reserved. Revision 0.04 December 2013

Address Individual Channel Disable (CHAN_ACTIVE2)

D4H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH11 CH10 CH9 CH8

R/W Default ~ ~ ~ ~ 1 1 1 1

Address Individual Channel Disable (CHAN_ACTIVE3)

D5H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH15 CH14 CH13 CH12

R/W Default ~ ~ ~ ~ 1 1 1 1

Address Individual Channel Disable (CHAN_ACTIVE4)

D6H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH19 CH18 CH17 CH16

R/W Default ~ ~ ~ ~ 1 1 1 1

Address Individual Channel Reseed (CHAN_RESEED0)

D7H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH3 CH2 CH1 CH0

R/W Default ~ ~ ~ ~ 0 0 0 0

Address Individual Channel Reseed (CHAN_RESEED1)

D8H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH7 CH6 CH5 CH4

R/W Default ~ ~ ~ ~ 0 0 0 0

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 17 of 54

All Rights Reserved. Revision 0.04 December 2013

Address Individual Channel Reseed (CHAN_RESEED2)

D9H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH11 CH10 CH9 CH8

R/W Default ~ ~ ~ ~ 0 0 0 0

Address Individual Channel Reseed (CHAN_RESEED3)

DAH Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH15 CH14 CH13 CH12

R/W Default ~ ~ ~ ~ 0 0 0 0

Address Individual Channel Reseed (CHAN_RESEED4)

DBH Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH19 CH18 CH17 CH16

R/W Default ~ ~ ~ ~ 0 0 0 0

Address Auto ATI Target

DCH Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH Byte)

R/W Default 04H (giving a Target value of = 1024 decimal)

Address Auto ATI Target

DDH Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW Byte)

R/W Default 00H (giving a Target value of = 1024 decimal)

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 18 of 54

All Rights Reserved. Revision 0.04 December 2013

Address I/O Port

DEH Bit 7 6 5 4 3 2 1 0

Access Name GPIO_7 GPIO_6 GPIO_5 GPIO_4 GPIO_3 GPIO_2 GPIO_1 GPIO_0

R/W I/O‟s can be read, or set/cleared here.

Address I/O Tris

DFH Bit 7 6 5 4 3 2 1 0

Access Name GPIO_7 GPIO_6 GPIO_5 GPIO_4 GPIO_3 GPIO_2 GPIO_1 GPIO_0

R/W Default 1 1 1 1 1 1 1 1

NOTE: If the pins are used as Cx channels, they MUST be set to inputs in the TRIS register

1.3 Memory Map Description

1.3.1 Device Information

Product Number

The product number for the IQS316 is 27 (decimal).

Version Number

The version number of the device ROM can be read in this byte.

1.3.2 Device Specific Data

XY Info1 (UI_FLAGS0)

Bit 7: SHOW_RESET: This bit can be read to determine whether a reset occurred on
the device since the ACK_RESET bit has been set. The value of
SHOW_RESET can be set to „0‟ by writing a „1‟ in the ACK_RESET bit in the
PROX_SETTINGS_2 byte.

 0 = No reset has occurred since last cleared

 1 = Reset has occurred

Bit 6: MODE_INDICATOR: Indicates current mode of charging

 0 = Currently in Prox Mode

 1 = Currently in Touch Mode

Bit 5:3: Unused

Bit 2: ATI_BUSY: Status of automated ATI routine

 0 = Auto ATI is not busy

1 = Auto ATI in progress

Bit 1: RESEED_BUSY: Global Channel Reseed Status

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 19 of 54

All Rights Reserved. Revision 0.04 December 2013

0 = Reseed is not busy

1 = Reseed is currently taking place

Bit 0: NOISE: This bit indicates the presence of noise interference.

0 = Current cycle has not detected the presence of noise

1 = Current cycle has detected the presence of noise

1.3.3 Proximity Status Bytes

Proximity Status

The proximity status of the channels relating to the current group can be read here. The current
group can be determined by reading the Group Number register. The channels and group
numbers relate as shown in Table 1.2.

Table 1.2 Channel data available

Current Group Number Channels available

0 CH0 / CH1 / CH2 / CH3

1 CH4 / CH5 / CH6 / CH7

2 CH8 / CH9 / CH10 / CH11

3 CH12 / CH13 / CH14 / CH15

4 CH16 / CH17 / CH18 / CH19

1.3.4 Touch Status Bytes

Touch Status

The touch status of the channels relating to the current group can be read here. The current group
can be determined by reading the Group Number register. The channels and group numbers
relate as shown in Table 1.2.

1.3.5 Halt Bytes

Halt Status

The halt status of the channels relating to the current group can be read here. The current group
can be determined by reading the Group Number register. The channels and group numbers
relate as shown in Table 1.2.

1.3.6 Active Bytes

Group Number

The group number that can be read in this byte indicates which group‟s data is currently
available. Group 0 is the Prox Mode group, and Group 1-4 are the Touch Mode groups.

1.3.7 Current Samples

The Current Samples for the current group can be read in their respective addresses. The
HIGH bytes and LOW bytes are found in consecutive addresses.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 20 of 54

All Rights Reserved. Revision 0.04 December 2013

1.3.8 Long-Term Averages & Touch/Prox Thresholds

The LTA values for the current group can be read in their respective addresses. The HIGH
bytes and LOW bytes are found in consecutive addresses.

The first four bits (high nibble) of each LTA HIGH Byte is the Prox and Touch Thresholds for
the respective channel. Care must be taken when overwriting a LTA that the required settings
are also included in the HIGH byte.

LTA HIGH Byte

Bit 7-6: Touch Threshold: The value of these two bits, together with the global Touch
Range bit determines the Touch Threshold, as shown in Table 1.3.

Bit 5-4: Prox Threshold: The value of these two bits, together with the Prox Range bit
determines the Prox Threshold, as shown in 0.

Bit 3-0: LTA<11:8>: The upper 4 bits of the LTA.

Table 1.3 Touch Threshold Values

Table 1.4 Prox Threshold Values

Prox Threshold <1:0>
PROX_RANGE = 0 PROX_RANGE = 1

Prox Threshold

00 2 8 (default)

01 3 16

10 4 20

11 6 30

LTA LOW Byte

Bit 7-0: LTA<7:0>: The lower byte of the LTA.

Touch Threshold <1:0>
TOUCH_RANGE = 0 TOUCH_RANGE = 1

Touch Threshold:

00 1/32 (default) 4/16

01 1/16 6/16

10 2/16 8/16

11 3/16 10/16

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 21 of 54

All Rights Reserved. Revision 0.04 December 2013

1.3.9 Device Settings

UI Settings 0 (UI_SETTINGS0)

Bit 7: RESEED: Reseed the LTA filter. This can be used to adapt to an abrupt
environment change, where the filter is too slow to track this change. Note that
with the Short and Long Halt selections, an automatic Reseed will be performed
when the halt time has expired, thus automatically adjusting to the new
surroundings.

 0 = Do not reseed

 1 = Reseed (this is a global reseed)

Bit 6: ATI_MODE: This selects which mode to perform the auto ATI routine on, and
the AUTO_ATI enable bit initiates the routine.

0 = Automated ATI will apply to Prox-Mode channels

 1 = Automated ATI will apply to Touch-Mode channels

Bit 5: PROX RANGE: Selects between two Prox threshold sets. The range is a global
setting and applies to all channels; whereby each channel can then individually
be setup to a custom threshold value within this selected range.

 0 = Lower range threshold set

 1 = Higher range threshold set

Bit 4: TOUCH RANGE: Selects between two touch threshold sets. The range is a
global setting and applies to all channels; whereby each channel can then
individually be setup to a custom threshold value within this selected range.

 0 = Lower range threshold set

 1 = Higher range threshold set

Bit 3: FORCE PROX MODE: Force charging to Prox Mode. If this bit is set, automatic
transitions between Prox and Touch Mode are overwritten.

 0 = Normal Operation

 1 = Only Prox Mode charging

Bit 2: FORCE TOUCH MODE: Force charging to Touch Mode. If this bit is set,
automatic transitions between Prox and Touch Mode are overwritten. Note: this
bit takes precedence over Bit 3.

 0 = Normal Operation

 1 = Only Touch Mode charging

Bit 1: ND: Noise Detection Enable. This setting is used to enable the on-chip noise
detection circuitry. With noise detected, the noise affected samples will be
ignored, and have no effect on the Prox, touch or LTA calculations. The NOISE
bit will appropriately be set as indication of the noise status.

 0 = Disable noise detection

 1 = Enable noise detection

Bit 0: Internal: This bit should always keep the value of 0

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 22 of 54

All Rights Reserved. Revision 0.04 December 2013

Power Settings (POWER_SETTINGS)

Bit 7:4: Unused

Bit 3: SLEEP: This bit puts the IC in SLEEP mode. Sleep is entered after termination
of the communication window. No processing is done in the sleep state. This
function is available in both SPI and I

2
C. In SPI, to wake the device from sleep,

the /SS line is pulled low, thus selecting the device, whereby waking it from
sleep. Communication with the device is then immediately resumed.

In I
2
C, to wake the device, the master simply is required to begin communication

with the device.

In both cases, when the IC is woken from sleep, the firmware returns to the
same communication window that was last used to put the device to sleep, thus
no new sample data is available. Note that if the IC has been in SLEEP for a
considerable time, it is recommended to reseed the channels, if no interaction is
assumed.

 0 = No effect

 1 = Puts device in sleep mode

Bit 2: MAIN_OSC: Select the frequency of the main oscillator

 0 = 8MHz

 1 = 4MHz (not recommended)

Bit 1-0: LP: Low Power (LP) options

 00 = Normal Power

 01 = LP1 ~100ms charging

 10 = LP2 ~ 200ms charging

 11 = LP3 ~ 300ms charging

ProxSense
®
 Module Settings 1 (PROX_SETTINGS_1)

Bit 7: CXVSS: Ground Cx channels when inactive. The default and recommended
setting is grounded. The result is illustrated by means of an example. If for
instance Group 1 is charging, all surrounding sensing lines not part of Group 1
are grounded, and thus in a defined state. If the Cx‟s are set to float, then their
state is unknown, and the sensors influence each other greatly, which is not
ideal.

 0 = Cx‟s float

 1 = Cx‟s grounded

Bit 6: ZC_EN: Enable zero-cross (ZC) triggered conversions. An input signal must be
connected to the ZC_IN I/O to synchronise the charging to. This is occasionally
used in high AC noise applications, whereby synchronising the charging to the AC,
the noise is reduced. This input allows the timing of the conversions to be
accurately controlled. Possibly the conversions can be sliced between noise events
to keep the samples noise free.

 0 = No Zero-Cross signal implemented

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 23 of 54

All Rights Reserved. Revision 0.04 December 2013

 1 = Conversions synchronised to ZC_IN

Bit 5-4: HALT: LTA Filter Halt selections

 00 = Short (LTA filter halts for ~20 seconds, then reseeds)

 01 = Long (LTA filter halts for ~40 seconds, then reseeds)

 10 = Never (LTA filter never halts)

 11 = Always (LTA filter is halted permanently)

Bit 3: AUTO_ATI: Enable the automated ATI routine. By enabling this bit, the device will
perform an automated ATI routine on the selected groups (selected by ATI_MODE),
and will attempt to reach the target setup in AUTO-ATI Target. Note that the ATI
routine is only started after the communication window is closed, and thus the
ATI_BUSY bit will only be set in the following communication window.

 0 = No action

 1 = Begin auto ATI routine

Bit 2-0: CXDIV[2:0]: Selection bits for charge transfer frequency

Table 1.5 Charge transfer frequency

MAIN_OSC = 4MHz MAIN_OSC = 8MHz

CXDIV Conversion
Frequency

CXDIV Conversion
Frequency

000 2MHz 000 4MHz

001 1MHz 001 2MHz

010 500kHz 010 1MHz (default)

011 250kHz 011 500kHz

100 125kHz 100 250kHz

101-111 62.5kHz 101-111 125kHz

The charge transfer frequency is a very important parameter. Dependant on the design
application, the device frequency must be optimised. For example, if keys are to be used in an
environment where steam or water droplets could form on the keys, a higher transfer
frequency improves immunity. Also, if a sensor antenna is a very large object/size, then a
lower frequency must be selected since the capacitance of the sensor is large, and a lower
frequency is required to allow effective capacitive sensing on the sensor.

ProxSense
®
 Module Settings 2 (PROX_SETTINGS_2)

Bit 7: Unused

Bit 6: SHIELD_EN: Automatic shield implementation. Each group will have a shield
setup automatically on the two shield outputs, according to Table 1.6.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 24 of 54

All Rights Reserved. Revision 0.04 December 2013

Table 1.6 Automated Shield Channels

Group SHLD_A SHLD_B

0 CxA0 CxB0

1 CxA0 CxB0

2 CxA1 CxB1

3 CxA2 CxB2

4 CxA3 CxB3

 0 = Shield is set by SHIELD_SETTING byte

 1 = Shield is automatically loaded according to Table 1.6

Bit 5: STOP_COMMS: Skip the SPI/I
2
C communication window. This can be used if

the master does not want to service the IQS316 every charge cycle. Normal
operation of the IC continues, and only the communication window is bypassed.
Only when the master initiates, or when a Prox is sensed, will the
communication be resumed.

 0 = Normal Communication

 1 = Communication aborted until Prox detected, or master forces a resume

Bit 4: ACK_RESET: Acknowledge „SHOW_RESET‟.

 0 = Nothing

 1 = Clear the flag SHOW_RESET (send only once)

Bit 3: SKIP_CONV: Don‟t perform conversion. This can be used, for example if
settings for all the groups are to be written. The current groups‟ settings can be
completed, and the communication window can then be terminated. The device
then loads the next groups‟ data (without performing a conversion), and the next
communication window is available. Stepping through all the groups can thus
be done without the need to wait for a conversion to complete.

 0 = Normal operation

1 = Skip conversions (Load next group‟s data and return to communication
window)

Bit 2: ACF_DISABLE: Disable the AC Filter on Group 0.

 0 = AC Filter is enabled

 1 = AC Filter is disabled

Bit 1: LTN_DISABLE: Disable the LTN Filter on Group 0.

 0 = LTN Filter is enabled

 1 = LTN Filter is disabled (recommended due to device limitation)

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 25 of 54

All Rights Reserved. Revision 0.04 December 2013

Bit 0: WDT_DISABLE: Device watchdog timer (WDT) disable.

 0 = Enabled

 1 = Disabled

ATI Multiplier C (ATI_MULT1)

The ATI Multiplier and ATI Compensation bits allow the controller to be compatible with a large
range of sensors, and in many applications with different environments. ATI allows the user to
maintain a specific sample value on all channels. The ATI Multiplier parameters would
produce the largest changes in sample values and can be thought of as the high bits of ATI.
The ATI Compensation bits are used to influence the sample values on a smaller scale to
provide precision when balancing all channels as close as possible to the target. The ATI
Multiplier parameters are further grouped into two parameters namely ATI Multiplier C and ATI
Multiplier I. ATI multiplier I consists of a single bit and has the biggest effect on the sample
value and can be considered as the highest bit of the ATI parameters.

The ATI_MULT1 byte contains the ATI Multipliers C settings for all channels of the current
group. Each channel has two ATI Multiplier C bits where the value of „11‟ would provide the
highest CS value and the value of „00‟ would provide the lowest.

ATI Multiplier I (ATI_MULT2)

The ATI Multiplier I bit is the ATI bit which would make the largest adjustment to the sample
value. The ATI_MULT3 byte contains the ATI Multiplier I settings for all the channels in the
current group, where a value of „1‟ would produce the largest sample value and a value of „0‟
would produce the smallest sample value.

ATI Compensation Settings

The ATI Compensation parameter can be configured for each channel in a range between 0-
255 (decimal). The ATI compensation bits can be used to make small adjustments of the
sample values of the individual channels.

Shield Settings (SHLD_SETTINGS)

If the SHIELD_EN bit is set, the value written to the SHLD_SETTINGS register is simply
ignored. Otherwise the shield can be manually configured here.

The SHLD_SETTINGS byte is used to enable or disable the two active shields. Bit 0-2 control
which sensor lines are to be shielded on SHLD_A and SHLD_B. By default the shields are
disabled with SHLD_SETTINGS = 0. Manual configuration is implemented as shown in Table
1.7.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 26 of 54

All Rights Reserved. Revision 0.04 December 2013

Table 1.7 SHLD_A and SHLD_B configuration

SHLD_SETTINGS<2:0> SHLD_A input
connected to

SHLD_B input
connected to

000 SHLDL off (default) SHLDR off (default)

001 CxA6 CxB6

010 CxA5 CxB5

011 CxA4 CxB4

100 CxA3 CxB3

101 CxA2 CxB2

110 CxA1 CxB1

111 CxA0 CxB0

Cx Configuration (CX_CONFIG)

Bit 7: CX_GPIO_1: Cx or I/O selection.

 0 = CxA7, CxA6, CxB7 and CxB6 are used as sensor lines

 1 = GPIO_7, GPIO_6, GPIO_5 and GPIO_4 are implemented as I/O‟s

Table 1.8 Upper Nibble of I/O Port Selection

CX_GPIO_1
Selection

CxA7 / GPIO_7
function

CxA6 / GPIO_6
function

CxB7 / GPIO_5
function

CxB6 / GPIO_4
function

0 CxA7 CxA6 CxB7 CxB6

1 GPIO_7 GPIO_6 GPIO_5 GPIO_4

Bit 6: CX_GPIO_0: Cx or I/O selection.

 0 = CxA5, CxA4, CxB5 and CxB4 are used as sensor lines

 1 = GPIO_3, GPIO_2, GPIO_1 and GPIO_0 are implemented as I/O‟s

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 27 of 54

All Rights Reserved. Revision 0.04 December 2013

Table 1.9 Lower Nibble of I/O Port Selection

CX_GPIO_1
Selection

CxA5 / GPIO_3
function

CxA4 / GPIO_2
function

CxB5 / GPIO_1
function

CxB4 / GPIO_0
function

0 CxA5 CxA4 CxB5 CxB4

1 GPIO_3 GPIO_2 GPIO_1 GPIO_0

Please note that if the pins are selected as I/O’s, then the TRIS and PORT can be configured
as required. However if the pins are used as Cx sensors, then the TRIS MUST be set as
inputs (‘1’) for those specific channels.

Bit 3-0: PM_CX_SELECT: Groups who‟s Cx‟s are included in Prox Mode charging

 0 = Group not included

 1 = Group included

In this register, a selection of groups 4-1 is made to determine which sensor lines will be used
during Prox Mode charging (Group 0). Each bit therefore represents four sensor lines to be
added or removed from Group 0.

*Note that at least two groups have to be set for this selection.

Table 1.10 Sensor Line Selection for Prox Mode

CX_CONFIG bit CH0 CH1 CH2 CH3

0 (Group 1 channels) CxA0 CxB0 CxA4 CxB4

1 (Group 2 channels) CxA1 CxB1 CxA5 CxB5

2 (Group 3 channels) CxA2 CxB2 CxA6 CxB6

3 (Group 4 channels) CxA3 CxB3 CxA7 CxB7

To help illustrate this, an example is provided. If bit 0 and 2 are set in CX_CONFIG, the
channels used in Prox Mode are shown in Table 1.11. It can be seen that the Proximity
channel 0 (CH0) consists of the two sensor lines CxA0, and CxA2. And similarly the CH1 to
CH3‟s sensor lines can be noted. This example thus has 8 of the 16 sensor lines also
providing Proximity input. The other 8 have no influence on the Prox Mode channels.

Table 1.11 PM_CX_SELECT example

It can be seen that if all 4 bits are set, all 16 of the Cx sensor lines are antenna inputs for the
Prox Mode. It is recommended that if the design has any sensor buttons close to noise

CX_CONFIG CH0 CH1 CH2 CH3

CX_CONFIG= 05H CxA0, CxA2 CxB0, CxB2 CxA4, CxA6 CxB4, CxB6

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 28 of 54

All Rights Reserved. Revision 0.04 December 2013

sources (negative influence on proximity), that these can be chosen to fall in the same group,
which can then be excluded from Prox Mode by means of the PM_CX_SELECT register.

Default Comms Pointer

The value stored in this register will be loaded into the Comms Pointer at the start of a
communication window. For example, if the design only requires the Proximity Status
information each cycle, then the Default Comms Pointer can be set to ADDRESS „31H‟. This
would mean that at the start of each communication window, the comms pointer would already
be set to the Proximity Status register, simply allowing a READ to retrieve the data, without the
need of setting up the address.

Individual Channel Disable

Each channel can be individually disabled in these registers. Note that the current group
number has no influence on these registers as each channel disable register has a unique
address.

Individual Channel Reseed

Each channel can be individually reseeded in these registers. Note that the current group
number has no influence on these registers as each channel reseed register has a unique
address. Also note that these bits are set initially by the IQS316 so that all channels are
reseeded at startup, but are cleared immediately when each cycle is processed. However, the
defaults are shown as „0‟, since after 1 cycle they are then cleared.

Auto-ATI Target

The automated ATI target can be set in these two consecutive registers. These registers are
used for the Prox Mode, as well as the Touch Mode ATI targets. The selection between which
of these modes to Auto-ATI, is set by ATI_MODE in UI_SETTINGS0<6>.

For example, if the Prox Mode channels must be tuned to sample values = 800, and the Touch
Mode channels to sample values = 400, the following steps are taken:

Step 1: Set Auto ATI Target to 800

Step 2: Select Prox Mode for ATI by clearing ATI_MODE bit (UI_SETTINGS0<6> = 0)

Step 3: Start Auto-ATI procedure by setting AUTO-ATI bit (PROX_SETTINGS_1<3>)

Step 4: Wait for Prox Mode ATI to complete, which is when ATI_BUSY bit clears
(UI_FLAGS0<2> = 0)

Step 5: Set Auto ATI Target to 400

Step 6: Select Touch Mode for ATI by setting ATI_MODE bit (UI_SETTINGS0<6> = 1)

Step 7: Start Auto-ATI procedure by setting AUTO-ATI bit (PROX_SETTINGS_1<3>)

I/O Port and Tris

When setup to be used as I/O‟s (CX_GPIO_1 and CX_GPIO_0 settings), the data direction
can be set in the I/O Tris register as shown in Table 1.12.

If used as Cx‟s, the TRIS must be set as inputs!

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 29 of 54

All Rights Reserved. Revision 0.04 December 2013

Table 1.12 Tris Configuration

Tris bit
<7:0>

I/O configuration

0 Output

1 Input / Tri-state

If setup as outputs, the state of the I/O‟s can then be set in the register as shown in Table 1.13

Table 1.13 I/O Outputs

Port bit
<7:0>

I/O status

0 Output LOW

1 Output HIGH

If setup as inputs, the status of the I/O‟s can be read from the register.

2 General Implementation hints

When implementing the communication interface with the IQS316, please refer to the IQS316
datasheet for a detailed description of the SPI and I

2
C communication. This section contains

some general guidelines and hints regarding the communication interface.

2.1 Communication window

Upon implementing either SPI or I
2
C it is important to note the difference in the working of the

communication window.

2.1.1 SPI Communication window

When communicating via SPI, the communication window will remain open until a new
conversion command is received (FE written to IQS316 in „address‟ time-slot of write
transaction). While the communication window is open the master may initiate and terminate
as many read and write communication sessions as required.

2.1.2 I2C Communication window

When communicating via I
2
C, the communication window will automatically close when an I

2
C

STOP bit is received by the IQS316. The IQS316 will then proceed to start with a new
conversion and the READY line will be pulled low until the new conversion is complete.

Note that there is no command via I
2
C to initiate a new conversion. To perform multiple read

and write commands, the repeated start function of the I
2
C must be used to stack the

commands together.

2.2 Startup Procedure

The following procedures are for setup of specific features of the IQS316 that requires more
attention. More features can be setup by setting the appropriate registers as required.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 30 of 54

All Rights Reserved. Revision 0.04 December 2013

2.2.1 Individual Prox and Touch Thresholds

Step 1: First set PROX_SETTINGS_2<3> to skip conversion. This will ensure that the
system always cycles through all the groups.

Step 2: Read the group number from the GROUP_NUM register (3Dh).

Step 3: In a „switch‟ construct, check which group number was read.

Step 4: For this group set the thresholds by writing the chosen threshold values bits 7-4
of 83h, 85h, 87h or 89h, depending on the group number. Remember the
threshold values are also determined by the Prox range bit, UI_SETTINGS0<5>,
which will set the range for all the groups.

Step 5: End the I
2
C window and allow for small delay. No conversions will take place but

the group number will increment.

Step 6: Read the group number again, and repeat Steps 3-5 until all the groups 0 to 4
has been configured.

Step 7: Make sure to disable skip conversions so that sensing can resume.

2.2.2 Auto ATI Procedure

For example, if the Prox Mode channels must be tuned to sample values = 800, and the Touch
Mode channels to sample values = 400. It is necessary to force the IQS316 to Prox- or touch-
mode during setup of the auto ATI. The following steps are taken:

Step 1: Set Auto ATI Target to 800

Step 2: Select Prox Mode for ATI by clearing ATI_MODE bit (UI_SETTINGS0<6> = 0),
here it is crucial to end the communication window so that the next cycle is in
Prox Mode.

Step 3: Start Auto-ATI procedure by setting AUTO-ATI bit (PROX_SETTINGS_1<3>)

Step 4: Wait for Prox Mode ATI to complete, which is when ATI_BUSY bit clears
(UI_FLAGS0<2> = 0)

Step 5: Set Auto ATI Target to 400

Step 6: Select Touch Mode for ATI by setting ATI_MODE bit (UI_SETTINGS0<6> = 1),
here it is crucial to end the communication window so that the next cycle is in
Prox Mode.

Step 7: Start Auto-ATI procedure by setting AUTO-ATI bit (PROX_SETTINGS_1<3>)

Step 8: Wait for Touch Mode ATI to complete, which is when ATI_BUSY bit clears
(UI_FLAGS0<2> = 0)

Although the ATI is finished, the current samples will take a few conversions to settle at the
correct value.

2.2.3 Post Setup

After sending initial settings to the IQS316, it is recommended to execute a reseed. If the Auto
ATI was done last, it may not be necessary to reseed.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 31 of 54

All Rights Reserved. Revision 0.04 December 2013

2.3 General I2C Hints

2.3.1 I2C Pull-up resistors

When implementing I
2
C it is important to remember the pull-up resistors on the data and clock

lines. 4.7kΩ is recommended, but for lower clock speeds bigger pull-ups will reduce power
consumption.

2.3.2 MCLR

Suggested implementation is to have the IQS316 and the pull-up resistors connect to the
power supply of the device. The MCLR pin should then be used to reset the IQS316.
Remember to hold the MCLR low until master setup has been done.

2.3.3 Reset Device while using I2C

When a reset occurs, some care needs to be taken to ensure that the IQS316 restarts
correctly. The reset pin needs to be LOW before the IQS316 can be initialised, otherwise the
master will read a ready signal prematurely. To accomplish this without any delays, define the
ready pin on the master as an output and pull it LOW. Then, redefine it as an input line just
before initializing the IQS316.

3 Sample implementation

An example implementation of the IQS316 is described in this section. This implementation
performs a setup of the IQS316, and then retrieves Prox and touch data for each cycle. For
this implementation a PIC18F4550 was used as the master device.

Communication between the master and the IQS316 was done in SPI and for I
2
C, and are

both covered in this section. For further explanations of the I
2
C and SPI protocol, refer to the

IQS316 datasheet.

The example implementation firmware was done in MPLAB X version 1.85.

The compiler used was C18 version 3.46.

Complete projects for SPI and I
2
C are available for reference.

3.1 Overview

 Firstly an initialisation function configures the PIC microcontroller

 Then the communication is configured (either SPI or I
2
C) for communication between

the PIC and the IQS316. (NOTE: the selection between SPI and I
2
C must be done

separately in hardware on the IQS316 PCB by correctly configuring the SPI_SELECT)

 A delay is added to allow the IQS316 to start up correctly (the datasheet says 16ms
can be expected until RDY is active for the first time)

 Now the settings on the IQS316 are configured via I
2
C or SPI

 The setup is now completed and the system enters an endless loop where new data is
obtained from the IQS316, and then processed.

3.1.1 Communications:

For a detailed description of the communication protocol refer to the IQS316 datasheet.

SPI:

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 32 of 54

All Rights Reserved. Revision 0.04 December 2013

Writing to IQS316: The master initiates communication by writing a zero (00H) to the IQS316.
Next the address to write is sent to the IQS316. The byte sent after the address will be written
to that address.

Another address can now be sent to the IQS316. Communication is terminated by sending
FFH instead of an address. (This only ends the transaction, and not the current communication
window)

 E.g. write 35H to address 12H:

 Master writes 00H to IQS316. (Initiates comms in write mode, FFH returned)

 Master writes 12H to IQS316. (Setup address, returns 00H)

 Master writes 35H to IQS316. (35H stored at address 12H, 01H returned)

 Master writes FFH to IQS316. (End write cycle, 00H returned)

MCU

Header

FF

00

01

00

01

Control

W
00

Address

n

Data n

Address

n+1

Data n+1

00

Stop

FF

SOMI

MOSI

Figure 3.1 SPI write sequence

Additionally, if the master writes FEH to the IQS316, a new conversion will be initiated and the
communication window will be terminated.

Reading from the IQS316: The master initiates communication by writing a one (01H) to the
IQS316. During each communication cycle (one byte transmitted and received) the data
stored at the location indicated by the address pointer will be sent to the master. The address
pointer value in turn is replaced by the data sent to the IQS316 by the master. However, upon
receiving FEH from the master the address pointer is simply incremented. The default value of
the address pointer is 10H. The master ends this transfer by writing FFH to the IQS316.

 E.g. read address 15H and 16H:

 Master writes 01H to IQS316. (Initiates comms in read mode, FFH returned)

Master writes 15H to IQS316. (Set pointer to 15H, data stored at current pointer
address returned)

 Master writes FEH to IQS316 (pointer incremented, data stored at 15H returned)

 Master writes FFH to IQS316. (End read cycle, data stored at 16H returned)

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 33 of 54

All Rights Reserved. Revision 0.04 December 2013

MCU

Header

FF

Data @

pointer

Data @

pointer+1

Data @

Adr 12

Data @

Adr 13

Control

R
01

FE

12

FE

Stop

FF

Overwrite Pointer with

address ‘12’

SOMI

MOSI

Figure 3.2 SPI read sequence

Please Note: The internal address pointer is only reset to the default value (10H) when a new
conversion is called. It is not reset when switching between read and write routines.

I
2
C

Standard I
2
C read and write protocol is used.

Writing to IQS316: To write an I
2
C START condition is generated. This is followed by the

device address with the WRITE bit configured. The next byte is the starting address of where
to write. All following bytes are then written to the IQS316. Once complete, either a repeated
start is given to start another data transaction, or an I

2
C STOP is done, which ends the

communication window.

Reading from the IQS316: The master again sends and I
2
C START, followed by the device

address with a WRITE bit configured. The address from where to READ is then WRITTEN to
the IQS316. Now a repeated-START is sent, and the device address with a READ bit is sent.
Then all the required bytes can be read from the IQS316, again ending in a STOP if the
comms window can be terminated.

3.2 Functions

The library example functions are provided here, with short descriptions. Also refer to the
actual firmware where the code is also well commented and explained.

3.2.1 IQS316_Settings

During initialization, an example setup of the IQS316 is performed. Naturally this will need to
be adapted for each application, but gives a good guideline of an efficient and correct setup
procedure. The steps performed during this setup are as follows:

1. To confirm that communication is working correctly, and also that the expected IQS316
IC is present, the Product and Version numbers are read from the device. If these are
not as expected, an error hook is executed.

2. The reset is acknowledged and the SHOW_RESET bit is thus cleared. This will allow
the master to monitor for any unexpected reset events, which would then require
another setup of the IQS316 (this should not occur if power is stable, and the MCLR is
not pulled low). It is also confirmed that the SHOW_RESET bit does clear, otherwise
another debugging error hook is executed.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 34 of 54

All Rights Reserved. Revision 0.04 December 2013

3. Now the required channels can be selected, with any unwanted channels disabled
here.

4. The next section is tricky, since these settings need to be sent within a specific group.
The ATI Multiplier settings and prox/touch thresholds are cycle specific. To allow the
communication to cycle through all groups, the SKIP_CONVERSION bit must be set.
This overrides the natural charging sequence, and forces the device to cycle through all
groups, for easy parameter setup. Once all required groups have been configured, the
SKIP_CONVERSION setting must be disabled.

5. The Prox/Touch range settings are done, completing the threshold configuration.

6. Now the ATI is configured. Firstly for ProxMode the ATI Target is configured. Then the
routine is started and the firmware waits for the ATI_Busy flag to clear, indicating that
the process is complete. The system mode is changed to TouchMode, and again the
target is configured, and the ATI routine is executed for these channels.

7. No further settings are configured, but if required it is recommended to add settings
such as Low-Power and EventMode at the end of the settings function.

Listing 1. IQS316_Settings Function (I2C and SPI)

void
IQS316_Settings(void)
{
 uint8_t ui8StartGroup, ui8CurrentGroup;
 uint8_t ui8ProdNo, ui8VersionNo;
 uint8_t ui8DataArray[20];
 //
 // Confirm comms are working correctly, and also that expected IQS316
 // IC version is used. Do this by reading back the Product and Version
 // numbers from the IQS316
 //
 IQS316_Read(PROD_NUM, ui8DataArray, 2);
 ui8ProdNo = ui8DataArray[0];
 ui8VersionNo = ui8DataArray[1];
 IQS316_End_Comms_Window();

#ifdef DEBUG_IQS316
 if((ui8ProdNo != 27) || (ui8VersionNo != 1))
 {
 // Error condition, handle this here
 // (fix comms or get correct IQS316 version)
 //
 while(1);
 }
#endif
 //
 // Acknowledge the reset by sending an ACK_RESET to the IQS316. This will
 // clear the SHOW_RESET bit in UI_FLAGS0 register. From here on further, if
 // this SHOW_RESET bit ever becomes set, we know an unexpected reset has
 // occurred on the IQS316, and we should repeat the setup
 //
 ui8DataArray[0] = (ACK_RESET | LTN_DISABLE | WDT_DISABLE);
 IQS316_Write(PROX_SETTINGS_2, ui8DataArray, 1);
 IQS316_End_Comms_Window();

#ifdef DEBUG_IQS316
 IQS316_Read(UI_FLAGS0, ui8DataArray, 1);
 IQS316_End_Comms_Window();

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 35 of 54

All Rights Reserved. Revision 0.04 December 2013

 if((ui8DataArray[0] & SHOW_RESET) != 0)

 {
 // The show reset bit should be cleared after writing the ACK_RESET
 // previously. Check write procedures, and make sure comms window is
 // closed after sending ACK_RESET.
 while(1);
 }
#endif
 //
 // IQS316 Application specific SETUP
 // 1 - CHANNEL SETUP
 //
 ui8DataArray[0] = 0x03; // CHAN_ACTIVE0
 ui8DataArray[1] = 0x0F; // CHAN_ACTIVE1
 ui8DataArray[2] = 0x0F; // CHAN_ACTIVE2
 ui8DataArray[3] = 0x0F; // CHAN_ACTIVE3
 ui8DataArray[4] = 0x0F; // CHAN_ACTIVE4

 IQS316_Write(CHAN_ACTIVE0, ui8DataArray, 5);
 IQS316_End_Comms_Window();
 //
 // 2 - Setup ATI and thresholds (settings which must be sent in specific
 // comms window - depending which group is active)
 //
 IQS316_Read(GROUP_NUM, ui8DataArray, 1);
 ui8StartGroup = ui8DataArray[0];
 //
 // Enable skip conversions, so that IQS316 cycles through the the groups
 // 0, 1, 2, 3, 4, 0, 1, to allow configuring settings which must be
 // setup while in a specific cycle.
 //
 ui8DataArray[0] = (SKIP_CONV | LTN_DISABLE | WDT_DISABLE);
 IQS316_Write(PROX_SETTINGS_2, ui8DataArray, 1);
 ui8CurrentGroup = ui8StartGroup;

 do
 {
 switch(ui8CurrentGroup)
 {
 case 0:
 {
 // ATI C and ATI I settings
 //
 ui8DataArray[0] = 0x00; // ATI_MULT1
 ui8DataArray[1] = 0x00; // ATI_MULT2
 IQS316_Write(ATI_MULT1, ui8DataArray, 2);
 //
 // Set thresholds (in upper nibble of LTA)
 // NOTE: this will overwrite the LTA value also, but auto-ATI
 // will be done later, which will reseed the LTAs correctly
 //
 ui8DataArray[0] = PROX_THRES_8; // LTA_04_HI
 ui8DataArray[1] = 0x00; // low byte - irrelevant
 ui8DataArray[2] = PROX_THRES_8; // LTA_15_HI
 ui8DataArray[3] = 0x00; // low byte - irrelevant
 ui8DataArray[4] = PROX_THRES_8; // LTA_26_HI
 ui8DataArray[5] = 0x00; // low byte - irrelevant
 ui8DataArray[6] = PROX_THRES_8; // LTA_37_HI
 IQS316_Write(LTA_04_HI, ui8DataArray, 7);
 break;

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 36 of 54

All Rights Reserved. Revision 0.04 December 2013

 }
 case 1:

 {
 ui8DataArray[0] = 0x00; // ATI_MULT1
 ui8DataArray[1] = 0x00; // ATI_MULT2
 IQS316_Write(ATI_MULT1, ui8DataArray, 2);

 ui8DataArray[0] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_04_HI
 ui8DataArray[1] = 0x00; // low byte - irrelevant
 ui8DataArray[2] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_15_HI
 ui8DataArray[3] = 0x00; // low byte - irrelevant
 ui8DataArray[4] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_26_HI
 ui8DataArray[5] = 0x00; // low byte - irrelevant
 ui8DataArray[6] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_37_HI
 IQS316_Write(LTA_04_HI, ui8DataArray, 7);
 break;
 }
 case 2:
 {
 ui8DataArray[0] = 0x00; // ATI_MULT1
 ui8DataArray[1] = 0x00; // ATI_MULT2
 IQS316_Write(ATI_MULT1, ui8DataArray, 2);

 ui8DataArray[0] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_04_HI
 ui8DataArray[1] = 0x00; // low byte - irrelevant
 ui8DataArray[2] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_15_HI
 ui8DataArray[3] = 0x00; // low byte - irrelevant
 ui8DataArray[4] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_26_HI
 ui8DataArray[5] = 0x00; // low byte - irrelevant
 ui8DataArray[6] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_37_HI
 IQS316_Write(LTA_04_HI, ui8DataArray, 7);
 break;
 }
 case 3:
 {
 ui8DataArray[0] = 0x00; // ATI_MULT1
 ui8DataArray[1] = 0x00; // ATI_MULT2
 IQS316_Write(ATI_MULT1, ui8DataArray, 2);

 ui8DataArray[0] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_04_HI
 ui8DataArray[1] = 0x00; // low byte - irrelevant
 ui8DataArray[2] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_15_HI
 ui8DataArray[3] = 0x00; // low byte - irrelevant
 ui8DataArray[4] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_26_HI
 ui8DataArray[5] = 0x00; // low byte - irrelevant
 ui8DataArray[6] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_37_HI
 IQS316_Write(LTA_04_HI, ui8DataArray, 7);
 break;
 }
 case 4:
 {
 ui8DataArray[0] = 0x00; // ATI_MULT1
 ui8DataArray[1] = 0x00; // ATI_MULT2
 IQS316_Write(ATI_MULT1, ui8DataArray, 2);

 ui8DataArray[0] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_04_HI
 ui8DataArray[1] = 0x00; // low byte - irrelevant
 ui8DataArray[2] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_15_HI
 ui8DataArray[3] = 0x00; // low byte - irrelevant
 ui8DataArray[4] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_26_HI
 ui8DataArray[5] = 0x00; // low byte - irrelevant

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 37 of 54

All Rights Reserved. Revision 0.04 December 2013

 ui8DataArray[6] = PROX_THRES_20 | TOUCH_THRES_3_16; // LTA_37_HI
 IQS316_Write(LTA_04_HI, ui8DataArray, 7);

 break;
 }
 }
 IQS316_End_Comms_Window();

 IQS316_Read(GROUP_NUM, ui8DataArray, 1);
 ui8CurrentGroup = ui8DataArray[0];
 } while (ui8CurrentGroup != ui8StartGroup);
 //
 // Now Group specific settings are done, so disable the skip conversions
 //
 ui8DataArray[0] = (LTN_DISABLE | WDT_DISABLE);
 IQS316_Write(PROX_SETTINGS_2, ui8DataArray, 1);
 //
 // Set the high/low settings for prox and touch thresholds
 //
 ui8DataArray[0] = (PROX_THRES_RANGE | ND);
 IQS316_Write(UI_SETTINGS0, ui8DataArray, 1);
 //
 // Set ATI Target - For Prox Mode
 //
 ui8DataArray[0] = 0x03;
 ui8DataArray[1] = 0x20;
 IQS316_Write(AUTO_ATI_TARGET_HI, ui8DataArray, 2);
 IQS316_End_Comms_Window();
 //
 // Perform automated ATI routine (to setup ATI Compensation values)
 // NOTE: ATI_MODE already set to ProxMode, no need to configure.
 //
 ui8DataArray[0] = CXVSS | HALT0 | AUTO_ATI | CXDIV1;
 IQS316_Write(PROX_SETTINGS_1, ui8DataArray, 1);
 IQS316_End_Comms_Window();
 //
 // Read ATI Busy flag until it clears, then ProxMode ATI is done
 //
 do
 {
 IQS316_Read(UI_FLAGS0, ui8DataArray, 1);
 IQS316_End_Comms_Window();

 } while ((ui8DataArray[0] & ATI_BUSY) != 0);
 //
 // Perform ATI for Touch Mode
 // Set ATI_MODE to Touch
 //
 ui8DataArray[0] = ATI_MODE | PROX_THRES_RANGE | ND;
 IQS316_Write(UI_SETTINGS0, ui8DataArray, 1);
 IQS316_End_Comms_Window();
 //
 // Set ATI Target - For Touch Mode
 //
 ui8DataArray[0] = 0x03;
 ui8DataArray[1] = 0x20;
 IQS316_Write(AUTO_ATI_TARGET_HI, ui8DataArray, 2);
 IQS316_End_Comms_Window();
 //
 // Perform automated ATI routine (to setup ATI Compensation values)
 //
 ui8DataArray[0] = CXVSS | HALT0 | AUTO_ATI | CXDIV1;

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 38 of 54

All Rights Reserved. Revision 0.04 December 2013

 IQS316_Write(PROX_SETTINGS_1, ui8DataArray, 1);
 IQS316_End_Comms_Window();

 //
 // Read ATI Busy flag until it clears, then ATI is done
 //
 do
 {
 IQS316_Read(UI_FLAGS0, ui8DataArray, 1);
 IQS316_End_Comms_Window();

 } while ((ui8DataArray[0] & ATI_BUSY) != 0);
 //
 // Now setup the advanced settings as required by the design, such as the
 // following: Low-Power, charging mode, eventMode
 //
}

3.2.2 IQS316_Refresh_Data

New data from each cycle is read into the PIC master device. Each time the following bytes
are read: UI_FLAGS0, PROX_STATUS, TOUCH_STATUS, HALT_STATUS and
GROUP_NUM. Note that HALT_STATUS is not needed, but it is much faster to read through
this byte than to reconfigure a new read for a specific address.

The reset bit is monitored to catch any unexpected reset events. If such a situation is seen,
then the IQS316 is reconfigured.

The elements of the IQS316 structure are updated accordingly, with the GROUP_NUM used
to identify which channels data must be updated.

Listing 2. IQS316_Refresh_Data Function (I2C and SPI)

void
IQS316_Refresh_Data(void)
{
 uint8_t ui8CurrentGroup, ui8TempTouch, ui8TempProx;
 uint8_t ui8DataArray[5], ui8TempUIFlags0;

 IQS316_ReadCurrentAddress(ui8DataArray, 5);
 //
 // Comms window is now ended. Note if other data is required then obtain
 // this before ending the window
 //
 IQS316_End_Comms_Window();
 //
 // Temporarily store the received data
 //
 ui8TempUIFlags0 = ui8DataArray[0];
 ui8TempProx =ui8DataArray[1];
 ui8TempTouch =ui8DataArray[2];
 ui8CurrentGroup =ui8DataArray[4];
 //
 // Make sure an unexpected reset has not occurred
 //
 if((ui8TempUIFlags0 & SHOW_RESET) != 0)
 {
 // handle reset here, suggestion is to repeat IQS316 init
 //
 IQS316_Settings();
 }

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 39 of 54

All Rights Reserved. Revision 0.04 December 2013

 //
 // Here an example is given of how the data can be placed into an IQS316

 // structure. This is purely for example purposes
 //
 if(ui8CurrentGroup == 0)
 {
 if(ui8TempProx == 0)
 {
 IQS316.prox_detected = 0;
 }
 else
 {
 IQS316.prox_detected = 1;
 }
 }
 else
 {
 // Update the specific groups data
 //
 switch(ui8CurrentGroup)
 {
 case 1:
 IQS316.prox4_11 &= 0xF0;
 IQS316.touch4_11 &= 0xF0;

 IQS316.prox4_11 |= (ui8TempProx & 0x0F);
 IQS316.touch4_11 |= (ui8TempTouch & 0x0F);
 break;
 case 2:
 IQS316.prox4_11 &= 0x0F;
 IQS316.touch4_11 &= 0x0F;

 IQS316.prox4_11 |= ((ui8TempProx & 0x0F) << 4);
 IQS316.touch4_11 |= ((ui8TempTouch & 0x0F) << 4);
 break;
 case 3:
 IQS316.prox12_19 &= 0xF0;
 IQS316.touch12_19 &= 0xF0;

 IQS316.prox12_19 |= (ui8TempProx & 0x0F);
 IQS316.touch12_19 |= (ui8TempTouch & 0x0F);
 break;
 case 4:
 IQS316.prox12_19 &= 0x0F;
 IQS316.touch12_19 &= 0x0F;

 IQS316.prox12_19 |= ((ui8TempProx & 0x0F) << 4);
 IQS316.touch12_19 |= ((ui8TempTouch & 0x0F) << 4);
 break;
 }
 }
}

3.2.3 IQS316_Process_Data

A short example function is added here, and converts the key pressed to a binary number
which is displayed on 4 I/O pins.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 40 of 54

All Rights Reserved. Revision 0.04 December 2013

Listing 3. IQS316_Process_Data Function (I2C and SPI)

void

IQS316_Process_Data(void)

{
 uint8_t i, ui8ButtonNumber;
 uint16_t ui16BitMask, ui16TempTouch;
 //
 // Place code here to process data available in the IQS316 structure.
 // this example places the binary value of the pressed button on 4 LEDs
 //
 ui16BitMask = 0x0001;
 //
 // place the touch bits 4 to 19 into a word
 //
 ui16TempTouch = (uint16_t)IQS316.touch4_11 | (((uint16_t)IQS316.touch12_19)<<8);

 for(i = 0 ; i < 16 ; i++)
 {
 if((ui16TempTouch & ui16BitMask) != 0)
 ui8ButtonNumber = i;
 ui16BitMask = ui16BitMask<<1;
 }
 // Display binary value on PD7..PD4
 //
 ui8ButtonNumber = (LATD & 0x0F) | (ui8ButtonNumber<<4);

 LATD = ui8ButtonNumber;
}

3.2.4 Main Function (I2C and SPI)

The Main function sets up the hardware by writing all required initialization data to the
controller. After initialization the function runs the infinite loop to retrieve data from the IQS316
and to process the data as required.

Listing 4. Main Function

void
main(void)
{
 init();

 while(1)
 {
 // Get data from latest comms window
 //
 IQS316_Refresh_Data();
 //
 // Process this new data accordingly
 //
 IQS316_Process_Data();
 }
}

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 41 of 54

All Rights Reserved. Revision 0.04 December 2013

3.2.5 Comms_init

The Comms_Init function sets the registers in the PIC18F4550 for either SPI or I
2
C

communication.

At the end the IQS316 MCLR is released to allow the IQS316 to come out of reset.

Listing 5. Comms_Init Function (I2C)

void
Comms_init()
{
 TRISB = TRISB | 0x03; //set TRISB<1:0> SDA and SCL
 TRISA = TRISA | 0x02; //I2C ready line input

 PIR1bits.SSPIF = 0; //clear I2C interrupt flag

 SSPADD = 0x1C; //settings for I2C frequency - 416kHz
 SSPSTAT |= 0x80; //slew rate control for high speed (400kHz)

 SSPCON1 = 0x28; //enables I2C module on the PIC18F4550

 LATB = LATB | 0x04; //IQS316 MCLR High
}

Listing 6. Comms_Init Function (SPI)

void
Comms_init()
{
 TRISB |= 0x01; //SOMI input on B0
 TRISB &= 0xFD; //SCK output on B1
 TRISA |= 0x01; //RDY input on RA0
 TRISA &= 0xFD; //SS output on RA1
 TRISC &= 0x7F; //MOSI output on RC7

 SSPSTAT = 0x80;
 SSPCON1 = 0x32; //enables SSP, SCK idle high

 LATA |= 0x02; //Set SS high

 LATB = LATB | 0x04; //IQS316 MCLR High
}

HIGHER LEVEL COMMS READ AND WRITE FUNCTIONS:

The higher level communication functions (reading and writing data) can be called in any
sequence. All of them will wait for RDY to be set before performing the data read/write. None
of them terminate the communication window. Thus numerous read and write functions can
be called, and then the window can be ended when required.

3.2.6 IQS316_Read

The IQS316_Read function requires an address from which to read as parameter. Also an
array is sent where the read data is to be placed. The final parameter indicates how many
bytes are to be read during this data read transaction. The communication window is NOT
closed after this read function.

Listing 7. IQS316_Read Function (I2C)

void

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 42 of 54

All Rights Reserved. Revision 0.04 December 2013

IQS316_Read(uint8_t ui8Address, uint8_t *ui8Data, uint8_t ui8Length)
{
 uint8_t i;
 //
 // Wait for RDY and give I2C START (could be repeated start also)
 //
 CommsIQS316_start();
 //
 // Initiate comms by sending device address plus WRITE
 //
 CommsIQS316_send((IQS316_ADDR << 1) + 0x00);
 //
 // Send the address of where to write the data
 //
 CommsIQS316_send(ui8Address);
 //
 // Repeated start
 //
 CommsIQS316_start();
 //
 // Send device address plus READ
 //
 CommsIQS316_send((IQS316_ADDR << 1) + 0x01);
 //
 // Read in all the required data bytes, last read ends with a NACK
 //
 for(i = 0 ; i < ui8Length ; i++)
 {
 if(i == (ui8Length-1))
 ui8Data[i] = CommsIQS316_read_nack();
 else
 ui8Data[i] = CommsIQS316_read_ack();
 }
}

Listing 8. IQS316_Read Function (SPI)

void
IQS316_Read(uint8_t ui8Address, uint8_t *ui8Data, uint8_t ui8Length)
{
 uint8_t ui8Header, i;
 //
 // Writing a 0x01 on MOSI requests a READ operation
 //
 ui8Header = CommsIQS316_send(0x01);
 //
 // Make sure the header (0xFF) is received from the slave, otherwise error
 //
 if (ui8Header != 0xFF)
 {
 // Handle the error here, the 0xFF header should always be received
 // first. So this should not be called, during debugging use this
 // function to correct any comms issues.
 //
 Comms_Error();
 }
 //
 // Send specific address to read from (ignore returned data)
 //
 CommsIQS316_send(ui8Address);
 //

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 43 of 54

All Rights Reserved. Revision 0.04 December 2013

 // Read in as many bytes as specified
 //
 for(i = 0 ; i < ui8Length ; i++)
 {
 ui8Data[i] = CommsIQS316_send(0xFE);
 }

 //
 // End this read session (not the comms window)
 //
 CommsIQS316_send(0xFF);
}

3.2.7 IQS316_ReadCurrentAddress

The IQS316_ReadCurrentAddress function does NOT require an address from which to read
since it is assumed that the address pointer is already correct. The function does require an
array of where the read data is to be placed as well as a parameter indicating how many bytes
are to be read during this data read transaction. The communication window is NOT closed
after this read function.

This function is often used when retrieving the data from each new cycle, since the default
address pointer is already correctly configured at the start of each communication session.

Listing 9. IQS316_ReadCurrentAddress Function (I2C)

void
IQS316_ReadCurrentAddress(uint8_t *ui8Data, uint8_t ui8Length)
{
 uint8_t i;
 //
 // Wait for RDY and give I2C START (could be repeated start also)
 //
 CommsIQS316_start();
 //
 // Send device address plus READ
 //
 CommsIQS316_send((IQS316_ADDR << 1) + 0x01);
 //
 // Read in all the required data bytes, last read ends with a NACK
 //
 for(i = 0 ; i < ui8Length ; i++)
 {
 if(i == (ui8Length-1))
 ui8Data[i] = CommsIQS316_read_nack();
 else
 ui8Data[i] = CommsIQS316_read_ack();
 }
}

Listing 10. IQS316_Read Function (SPI)

void
IQS316_ReadCurrentAddress(uint8_t *ui8Data, uint8_t ui8Length)
{
 uint8_t ui8Header, i;
 //
 // Writing a 0x01 on MOSI requests a READ operation
 //
 ui8Header = CommsIQS316_send(0x01);
 //

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 44 of 54

All Rights Reserved. Revision 0.04 December 2013

 // Make sure the header (0xFF) is received from the slave, otherwise error
 //
 if (ui8Header != 0xFF)
 {
 Comms_Error();
 }
 //
 // Read in as many bytes as specified
 //
 for(i = 0 ; i < ui8Length ; i++)
 {
 ui8Data[i] = CommsIQS316_send(0xFE);
 }
 //
 // End this read session (not the comms window)
 //
 CommsIQS316_send(0xFF);
}

3.2.8 IQS316_Write

The IQS316_Write function requires the same parameters as the read function. The address
where to write, the data array containing the data bytes to write, and the number of bytes that
must be written must be provided. Again the communication window is not closed after the
write transaction.

Listing 11. IQS316_Write Function (I2C)

void
IQS316_Write(uint8_t ui8Address, uint8_t *ui8Data, uint8_t ui8Length)
{
 uint8_t i;
 //
 // Wait for RDY and give I2C START (could be repeated start also)
 //
 CommsIQS316_start();
 //
 // Initiate comms by sending device address plus WRITE
 //
 CommsIQS316_send((IQS316_ADDR << 1) + 0x00);
 //
 // Send the address of where to write the data
 //
 CommsIQS316_send(ui8Address);
 //
 // Write in all the required data bytes
 //
 for(i = 0 ; i < ui8Length ; i++)
 {
 CommsIQS316_send(ui8Data[i]);
 }
}

Listing 12. IQS316_Write Function (SPI)

void
IQS316_Write(uint8_t ui8Address, uint8_t *ui8Data, uint8_t ui8Length)
{
 uint8_t ui8Header, i;
 //

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 45 of 54

All Rights Reserved. Revision 0.04 December 2013

 // Writing a 0x00 on MOSI requests a WRITE operation
 //
 ui8Header = CommsIQS316_send(0x00);
 //
 // Make sure the header (0xFF) is received from the slave, otherwise error
 //
 if (ui8Header != 0xFF)
 {
 Comms_Error();
 }
 //
 // Write in as many bytes as specified
 //
 for(i = 0 ; i < ui8Length ; i++)
 {
 CommsIQS316_send(ui8Address++);
 CommsIQS316_send(ui8Data[i]);
 }
 //
 // End this read session (not the comms window)
 //
 CommsIQS316_send(0xFF);
}

3.2.9 IQS316_End_Comms_Window

To allow the IQS316 to exit communication mode, and perform sensing and processing, the
communication window must be correctly ended. In I

2
C this is done by sending an I

2
C STOP,

and in SPI during a WRITE transaction, an address of 0xFE must be sent. Both of these
functions wait for the RDY to change to the LOW state. This is just precautionary since on fast
microcontrollers, a following read/write could already start to process before the RDY has
transitioned from HIGH to LOW. It would then look as though a new communication window is
active, where actually it is the old window that is busy being closed.

Listing 13. IQS316_End_Comms_Window Function (I2C)

void
IQS316_End_Comms_Window(void)
{
 // To end the comms window you send an I2C STOP condition
 //
 CommsIQS316_stop();
 //
 // Wait for RDY to go LOW
 //
 while (RDY != 0)
 {}
}

Listing 14. IQS316_End_Comms_Window Function (SPI)

void
IQS316_End_Comms_Window(void)
{
 uint8_t ui8Header;
 //
 // Writing a 0x00 on MOSI requests a WRITE operation
 //
 ui8Header = CommsIQS316_send(0x00);

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 46 of 54

All Rights Reserved. Revision 0.04 December 2013

 //
 // Make sure the header (0xFF) is received from the slave, otherwise error
 //
 if (ui8Header != 0xFF)
 {
 Comms_Error();

 }
 // Write a 0xFE into address timeslot to end comms window
 //
 CommsIQS316_send(0xFE);
 //
 // Wait for RDY to go LOW
 //
 while (RDY != 0)
 {}
}

3.2.10 Comms_Error

The Comms_Error function can be called from any of the SPI functions if an unexpected value
is received. During developmental stages, this function may be used to indicate that an error
has occurred during communication. In final stages it would probably be preferred to simply
restart the system in the case that an error is detected.

Listing 15. Comms_Error Function (SPI)

void Comms_Error(void)
{
 //
 // Place error routine code here
 //
 while (1)
 {}
}

LOWER LEVEL COMMS READ AND WRITE FUNCTIONS:

The lower level functions are specific to the microcontroller used for the application. These functions are
thus specific to the PIC18F4550. These functions are provided below with short explanations.

NOTE: If the designer can reproduce the functionality of these lower level functions EXACTLY the same
when implementing on a different controller, then the rest of the higher level firmware can remain
unchanged.

3.2.11 I2C byte write

Send a byte and wait for the acknowledge.

Listing 16. CommsIQS316_send (I2C)

void
CommsIQS316_send(uint8_t send_data)
{
 SSPBUF = send_data;

 while (PIR1bits.SSPIF == 0)
 {}
 PIR1bits.SSPIF = 0; //clear flag

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 47 of 54

All Rights Reserved. Revision 0.04 December 2013

 while (SSPCON2bits.ACKSTAT == 1) //verify IQS316 acknowledge
 {}
}

3.2.12 Read with NACK

Read a byte, and indicate it is the last byte to be read by sending a NACK after the byte.

Listing 17. CommsIQS316_read_nack (I2C)

uint8_t
CommsIQS316_read_nack(void)
{
 unsigned char temp;

 SSPCON2bits.RCEN = 1;
 while (PIR1bits.SSPIF == 0)
 {}
 PIR1bits.SSPIF = 0; //clear flag

 while (SSPSTATbits.BF == 0)
 {}
 temp = SSPBUF;

 SSPCON2bits.ACKDT = 1;
 SSPCON2bits.ACKEN = 1;

 while (PIR1bits.SSPIF == 0)
 {}
 PIR1bits.SSPIF = 0; //clear flag

 while (SSPCON2bits.ACKEN == 1) {}

 return temp;
}

3.2.13 Read with ACK

Read a byte, and indicate more bytes are to be read by sending an ACK after the byte.

Listing 18. CommsIQS316_read_ack (I2C)

uint8_t
CommsIQS316_read_ack(void)
{
 unsigned char temp;

 SSPCON2bits.RCEN = 1;
 while (PIR1bits.SSPIF == 0)
 {}
 PIR1bits.SSPIF = 0; //clear flag

 while (SSPSTATbits.BF == 0)
 {}
 temp = SSPBUF;

 SSPCON2bits.ACKDT = 0;
 SSPCON2bits.ACKEN = 1;

 while (PIR1bits.SSPIF == 0)

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 48 of 54

All Rights Reserved. Revision 0.04 December 2013

 {}
 PIR1bits.SSPIF = 0; //clear flag

 while (SSPCON2bits.ACKEN == 1) {}

 return temp;
}

3.2.14 I2C START

Create an I
2
C start event.

Listing 19. CommsIQS316_start (I2C)

void
CommsIQS316_start(void)
{
 while (RDY == 0) //wait for ready
 {}

 SSPCON2bits.SEN = 1; //start condition

 while (PIR1bits.SSPIF == 0) //wait for start condition to be generated
 {}
 PIR1bits.SSPIF = 0; //clear flag

 while (SSPCON2bits.SEN == 1)
 {}
}

3.2.15 I2C STOP

Create an I
2
C stop event.

Listing 20. CommsIQS316_stop (I2C)

void
CommsIQS316_stop(void)
{
 SSPCON2bits.PEN = 1; //stop condition

 while (PIR1bits.SSPIF == 0) //wait for stop condition to be generated
 {}
 PIR1bits.SSPIF = 0; //clear flag

 while (SSPCON2bits.PEN == 1)
 {}
}

3.2.16 SPI Receive/Transmit

The SPI protocol is considerably more basic, and the only lower level function required is the
receive transmit function. This function receives a data byte on the SOMI line, and at the
same time transmits a data byte on the MOSI line.

Listing 21. CommsIQS316_RxTx (SPI)

uint8_t
CommsIQS316_RxTx(uint8_t ui8SendData)
{

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 49 of 54

All Rights Reserved. Revision 0.04 December 2013

 uint8_t ui8ReceiveData;
 //
 // Wait for ready signal
 //
 while(RDY == 0)
 {}

 //
 // Select IQS316 by pulling SS low
 //
 LATA = LATA & 0xFD;
 //
 // reset transmission complete flag
 //
 PIR1bits.SSPIF = 0;
 //
 // Perform read
 //
 ui8ReceiveData = SSPBUF;
 //
 // Initiate transmission
 //
 SSPBUF = ui8SendData;
 //
 // Wait for transmission complete flag
 //
 while (PIR1bits.SSPIF == 0)
 {}
 //
 // Temp store received byte
 //
 ui8ReceiveData = SSPBUF;
 //
 // Release SS line on IQS316
 //
 LATA = LATA | 0x02;

 return ui8ReceiveData;
}

3.2.17 Constant Declarations

The IQS316 Memory map is declared in IQS316.h. These constants can be used to easily
configure the registers. Bit definitions are also provided here.

Listing 22. IQS316.h Memory Map Constants (SPI)

#define PROD_NUM 0x00
#define VERSION_NUM 0x01

#define UI_FLAGS0 0x10

#define PROX_STAT 0x31
#define TOUCH_STAT 0x35
#define HALT_STAT 0x39
#define GROUP_NUM 0x3D

#define CUR_SAM_04_HI 0x42
#define CUR_SAM_04_LO 0x43
#define CUR_SAM_15_HI 0x44
#define CUR_SAM_15_LO 0x45
#define CUR_SAM_26_HI 0x46

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 50 of 54

All Rights Reserved. Revision 0.04 December 2013

#define CUR_SAM_26_LO 0x47
#define CUR_SAM_37_HI 0x48
#define CUR_SAM_37_LO 0x49

#define LTA_04_HI 0x83
#define LTA_04_LO 0x84
#define LTA_15_HI 0x85
#define LTA_15_LO 0x86
#define LTA_26_HI 0x87
#define LTA_26_LO 0x88
#define LTA_37_HI 0x89
#define LTA_37_LO 0x8A

#define UI_SETTINGS0 0xC4
#define POWER_SETTINGS 0xC5
#define PROX_SETTINGS_1 0xC6
#define PROX_SETTINGS_2 0xC7
#define ATI_MULT1 0xC8
#define ATI_MULT2 0xC9
#define ATI_C0 0xCA
#define ATI_C1 0xCB
#define ATI_C2 0xCC
#define ATI_C3 0xCD
#define SHLD_SETTINGS 0xCE
#define INT_CAL_SETTINGS 0xCF
#define PM_CX_SELECT 0xD0
#define DEFAULT_COMMS_PTR 0xD1
#define CHAN_ACTIVE0 0xD2
#define CHAN_ACTIVE1 0xD3
#define CHAN_ACTIVE2 0xD4
#define CHAN_ACTIVE3 0xD5
#define CHAN_ACTIVE4 0xD6
#define CHAN_RESEED0 0xD7
#define CHAN_RESEED1 0xD8
#define CHAN_RESEED2 0xD9
#define CHAN_RESEED3 0xDA
#define CHAN_RESEED4 0xDB
#define AUTO_ATI_TARGET_HI 0xDC
#define AUTO_ATI_TARGET_LO 0xDD

#define DIRECT_ADDR_RW 0xFC
#define DIRECT_DATA_RW 0xFD

// BIT DEFINITIONS

// UI_FLAGS0
#define SHOW_RESET 0x80
#define MODE_INDICATOR 0x40
// unused 0x20
// unused 0x10
// unused 0x08
#define ATI_BUSY 0x04
#define RESEED_BUSY 0x02
#define NOISE 0x01

// TOUCH THRESHOLDS
// with touch LOW range selected
#define TOUCH_THRES_1_32 0x00
#define TOUCH_THRES_1_16 0x40
#define TOUCH_THRES_2_16 0x80

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 51 of 54

All Rights Reserved. Revision 0.04 December 2013

#define TOUCH_THRES_3_16 0xC0
// with touch HIGH range selected
#define TOUCH_THRES_4_16 0x00
#define TOUCH_THRES_6_16 0x40
#define TOUCH_THRES_8_16 0x80
#define TOUCH_THRES_10_16 0xC0

// PROX THRESHOLDS
// with prox LOW range selected
#define PROX_THRES_2 0x00
#define PROX_THRES_3 0x10
#define PROX_THRES_4 0x20
#define PROX_THRES_6 0x30
// with prox HIGH range selected
#define PROX_THRES_8 0x00
#define PROX_THRES_16 0x10
#define PROX_THRES_20 0x20
#define PROX_THRES_30 0x30

// UI_SETTINGS0
#define RESEED 0x80
#define ATI_MODE 0x40
#define PROX_THRES_RANGE 0x20
#define TOUCH_THRES_RANGE 0x10
#define FORCE_PROX_THRES_MODE 0x08
#define FORCE_TOUCH_THRES_MODE 0x04
#define ND 0x02
// unused 0x01

// POWER_SETTINGS
// unused 0x80
// unused 0x40
// unused 0x20
// unused 0x10
#define SLEEP 0x08
#define MAIN_OSC 0x04
#define LP1 0x02
#define LP0 0x01

// PROX_THRES_SETTINGS_1
#define CXVSS 0x80
#define ZC_EN 0x40
#define HALT1 0x20
#define HALT0 0x10
#define AUTO_ATI 0x08
#define CXDIV2 0x04
#define CXDIV1 0x02
#define CXDIV0 0x01

// PROX_THRES_SETTINGS_2
// unused 0x80
#define SHIELD_EN 0x40
#define STOP_COMMS 0x20
#define ACK_RESET 0x10
#define SKIP_CONV 0x08
#define ACF_DISABLE 0x04
#define LTN_DISABLE 0x02
#define WDT_DISABLE 0x01

// CX_CONFIG
#define CX_GPIO_1 0x80

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 52 of 54

All Rights Reserved. Revision 0.04 December 2013

#define CX_GPIO_0 0x40
// unused 0x20
// unused 0x10
#define GROUP4 0x08
#define GROUP3 0x04
#define GROUP2 0x02

#define GROUP1 0x01

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 53 of 54

All Rights Reserved. Revision 0.04 December 2013

v0.02 Changes

 Corrected ATI C (ATI_MULT1) defaults

 Individual reseed bits defaults changed to „0‟, since they are cleared after the first cycle for the applicable group.

 Added prox/touch defaults to bit definitions, and made default clearer in tables

 Added clarity that if Cx/GPIO selection is set to Cx, then TRIS register must be set to inputs.

 Updated Section 2.2

 Corrected Table 1.11

 Corrected PM_CX_SELECT bit definition

v0.03 Changes

 Added links to make ease document navigation

v0.04 Changes

 Major changes done to the Example I
2
C and SPI firmware. All relevant sections updated.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd 2013 IQS316 Design Guide Page 54 of 54

All Rights Reserved. Revision 0.04 December 2013

 USA Asia South Africa

Physical

Address

6507 Jester Blvd
Bldg 5, suite 510G
Austin
TX 78750
USA

Rm1725, Glittery City

Shennan Rd

Futian District

Shenzhen, 518033

China

109 Main Street

Paarl

7646

South Africa

Postal

Address

6507 Jester Blvd
Bldg 5, suite 510G
Austin
TX 78750
USA

Rm1725, Glittery City

Shennan Rd

Futian District

Shenzhen, 518033

China

PO Box 3534

Paarl

7620

South Africa

Tel +1 512 538 1995 +86 755 83035294

ext 808

+27 21 863 0033

Fax +1 512 672 8442 +27 21 863 1512

Email kobusm@azoteq.com linayu@azoteq.com.cn info@azoteq.com

Please visit www.azoteq.com for a list of distributors and worldwide representation.

The following patents relate to the device or usage of the device: US 6,249,089 B1, US 6,952,084 B2, US 6,984,900
B1, US 7,084,526 B2, US 7,084,531 B2, EP 1 120 018 B2, EP 1 206 168 B1, EP 1 308 913 B1, EP 1 530 178 A1,
ZL 99 8 14357.X, AUS 761094, HK 104 14100A, US13/644,558, US13/873,418

IQ Switch
®
, SwipeSwitch™, ProxSense

®
, LightSense™, AirButton

®
 and the logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant
the accuracy, completeness or reliability of the information contained herein. All content and information are provided on a “as is” basis only, without any representations or warranties, express
or implied, of any kind, including representations about the suitability of these products or information for any purpose. Azoteq disclaims all warranties and conditions with regard to these
products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party
intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance,
error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely
for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for
application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No
licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or
exclusions does not apply, it is agreed that Azoteq‟s total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not
exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements
and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior
notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com.

WWW.AZOTEQ.COM

info@azoteq.com

mailto:kobusm@azoteq.com
mailto:linayu@azoteq.com.cn
mailto:info@azoteq.com
file:///C:/Users/User/Documents/ProxSense/Marketing%20-%20Sales/www.azoteq.com
http://www.azoteq.com/
http://www.azoteq.com/

