

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 1 of 24

All Rights Reserved. Revision 1.0 August 2013

AZD072 IQS333 Communication and Interface
Guideline

1 Introduction

This application note is designed to guide
the reader through the process of setting
up the communication interface between
the ProxSense® IQS333 IC and any MCU
capable of I2C (400kBit/s) communication.

This is done through flow diagrams as well
as providing the source code in listings
throughout the document.

In Figure 1.1 below an overview flow
diagram is shown to provide the reader

with an overview of what is discussed
within this document.

A Microchip PIC® was used in this
document, thus the code that is relevant is
listed in this document. The complete
source code is available from
http://www.azoteq.com/images/stories/soft
ware/iqs333_example_code.zip.

Figure 1.1 Initialize I2C Flow Diagram.

Initialize I2C

CLK, DATA, RDY
Inputs and floating

Turn IQS333 ON

Provide 3.3V to the IC’s VDDHI

Initialize IQS333 I2C

IQS333 starts in full streaming mode and for that

reason the device can be setup directly, without the

need for an event mode handshake

END

START

http://www.azoteq.com/images/stories/software/iqs333_example_code.zip
http://www.azoteq.com/images/stories/software/iqs333_example_code.zip

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 2 of 24

All Rights Reserved. Revision 1.0 August 2013

2 Communication Protocol

The IQS333 uses a bi-directional 3-wire
(SDA, SCL, and RDY) serial interface bus.
The serial protocol is I2CTM compatible.
The IQS333 has a ready (RDY) pin which
indicates when the device enters its
communication window period.
Communication with the device can only
take place in this state and can be
determined by monitoring the RDY line or
by using ACK polling, which is
discouraged. The IQS333 only functions
as a slave device on the bus. The bus is
controlled by a master device which
generates the serial clock (SCL), controls
bus access, and generates the START
and STOP conditions. The serial clock
(SCL) and serial data (SDA) lines are
open-drain and therefore must be pulled
high to the operating voltage with a pull-up
resistor (4.7kΩ recommended). The RDY
pin functions as an open-drain pin and
should always be pulled to the operating

voltage of the master device via a resistor
(100kΩ recommended).

During the communication window period
the RDY line will remain low for a
selectable duration of always (Timeout
Disabled) or approximately 14ms (See
datasheet for selection options). If the
master does not initiate a data transfer
during this time, the device will exit the
communication window and continue
doing conversions, with the data being
lost. The RDY line will remain low for the
duration of the communication window
period, or until a stop command is sent.

In Figure 2.1 the data transfer sequence
for the communication protocol is shown
as an overview of what is explained within
this section.

Start Condition
Address or

Acknowledge

Valid

Data Allowed

to Change
Stop Condition

SCL

SDA

(A) (B) (D)
(D)

(C) (A)

Figure 2.1 Data Transfer Sequence on the Serial Bus.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 3 of 24

All Rights Reserved. Revision 1.0 August 2013

3 Bus Characteristics

The following bus protocol has been
defined:

 Data transfer may only be initiated
when the bus is not busy

 During data transfer, the data line
must remain stable whenever the
clock line is HIGH. Changes in the
data line while the clock is HIGH will
be interpreted as START and STOP
conditions.

The following conditions have been
defined for the bus: (refer Figure 2.1)

 Bus Idle (A) - The SCL and SDA
lines are both HIGH.

 START Condition (B) - A HIGH to
LOW transition of the SDA while the
SCL is HIGH. All serial
communication must be preceded by
a START condition, which is shown in
Figure 3.1.

 REPEAT-START Condition - A
HIGH to LOW transition of the SDA
while the SCL is HIGH. This is used
for sending multiple bytes to the I2C
device, without terminating the
communication window, like in a
register read operation. An example
of a repeat-start is shown in Figure
3.3

 STOP Condition (C) - A LOW to
HIGH transition of the SDA while the
SCL is HIGH. All serial
communication must be ended by a
STOP condition and is shown in
Figure 3.2. NOTE: When a STOP
condition is sent the device will exit
the communications window and
continue with conversions.

 Data Valid (D) - The state of the SDA
line represents valid data when, after
a START condition, the SDA is stable
for the duration of the HIGH period of
the clock signal. The data on the line
must be changed during the LOW
period of the clock signal. There is
one clock pulse per bit of data. Each

data transfer is initiated with a START
condition and terminated with a STOP
condition.

 Acknowledge - The slave device
must generate an acknowledge after
the reception of each byte. The
master device must generate an extra
(9th) clock pulse which is associated
with this acknowledge bit. The device
that acknowledges, has to pull down
the SDA line during the acknowledge
clock pulse. NOTE: The IQS333 does
not generate any acknowledge bits
while it is not in its communication
window.

SDA

SCL

START

Figure 3.1 Start Condition.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 4 of 24

All Rights Reserved. Revision 1.0 August 2013

SDA

SCL

STOP

Figure 3.2 Stop Condition.

SDA

SCL

Repeat-Start

Figure 3.3 Repeat-
Start Condition.

Listing 1: START Condition

/*

 Function name: CommsIQS_start

 Parameters: none

 Return: none

 Description: A start condition is created on the I2C. Use a

 timeout sequence, to ensure that the i2c does not time out

*/

unsigned char CommsIQS_start(void)
{
 unsigned int timeout = 1000; // create a timeout for communication

 while (PORTBbits.RB0 == 1 && timeout > 0) // wait for ready - pin RB0 active low
 {
 timeout--;
 }

 SSP1CON2bits.SEN = 1; // start condition

 timeout = 1000; // Reload timer
 while ((PIR1bits.SSP1IF == 0) && (timeout > 0)) //wait for start condition to be generated
 {
 timeout--;
 }

 if (timeout == 0)
 {
 if ((SSP1CON2 & 0x08) == 0x08)
 {
 //re-init I2C
 SSP1CON1 = 0x00;
 SSP1CON2 = 0x00;
 SSP1CON1 = 0x28;
 }
 return IC_ERROR_SER_TIMEOUT;
 }

 PIR1bits.SSP1IF = 0; // clear flag

 timeout = 1000; // Reload timer
 while (SSP1CON2bits.SEN == 1 && timeout > 0); // verify start is complete
 {
 timeout--;
 }

 return RETURN_OK; // start was generated
}

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 5 of 24

All Rights Reserved. Revision 1.0 August 2013

Listing 2: STOP Condition

/*

 Function name: CommsIQS_stop

 Parameters: none

 Return: none

 Description: A stop condition is created on the I2C.

 A timeout is incorporated to insure a stuck condition

 does not occur on the i2c bus, holding the MCU stuck

*/
void CommsIQS_stop(void)
{
 unsigned int timeout = 1000; // create a timeout for communication

 SSP1CON2bits.PEN = 1; // stop condition

 while (PIR1bits.SSP1IF == 0) // wait for stop condition to be generated
 {
 timeout--;
 }

 PIR1bits.SSP1IF = 0; // clear flag

 timeout = 1000; // Reload timer
 while (SSP1CON2bits.PEN == 1)
 {
 timeout--;
 }

 delay_ms(1);
 //wait for the IQS device to become ready
 while(PORTBbits.RB0 == 0) // wait for the IQS to change from ready to not ready
 {}
 while(PORTBbits.RB0 == 1) // wait for the IQS to change from not ready to ready
 {}
}

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 6 of 24

All Rights Reserved. Revision 1.0 August 2013

Listing 3: Check for Acknowledge

/*

 Function name: CommsIQS_read_ack

 Parameters: none

 Return: unsigned char - the data received via the I2C

 Description: Enables the Master Receive Mode of the I2C module on the PIC16LF1827. The data received is

 returned and a ACK acknowledge is sent to the IQS259 to indicate that another read command

will follow this one.

 A timeout is incorporated to insure a stuck condition

 does not occur on the i2c bus, holding the MCU stuck

*/
unsigned char CommsIQS_read_ack(void)

{

 unsigned char temp;

 unsigned int timeout = 1000; // create a timeout for communication

 SSP1CON2bits.RCEN = 1; // enable master receiver mode

 while (PIR1bits.SSP1IF == 0 && timeout > 0) // wait for byte received flag

 {

 timeout--;

 }

 PIR1bits.SSP1IF = 0; //clear flag

 timeout = 1000; // Reload timer

 while (SSP1STATbits.BF == 0 && timeout > 0) // wait for buffer full flag (receive complete)

 {

 timeout--;

 }

 temp = SSP1BUF; // store received byte

 SSP1CON2bits.ACKDT = 0; // enable ACK

 SSP1CON2bits.ACKEN = 1; // execute ACK sequence

 timeout = 1000; // Reload timer

 while (PIR1bits.SSP1IF == 0 && timeout > 0) // Wait for ACK transmission complete

 {

 timeout--;

 }

 PIR1bits.SSP1IF = 0; // clear flag

 timeout = 1000; // Reload timer

 while (SSP1CON2bits.ACKEN == 1 && timeout > 0) // verify acknowledge sequence is complete

 {

 timeout--;

 }

 return temp; // return received data

}

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 7 of 24

All Rights Reserved. Revision 1.0 August 2013

4 Control byte and Device Address

The Control byte indicates the 7-bit device
address and the Read/Write indicator bit.
The structure of the control byte is shown
in Figure 4.1.

The I2C device has a 7 bit Slave Address
(default 64H) in the control byte as shown
in Figure 4.1. The control bytes for Read
and Write with default sub-addresses are
as follows:

 Write to the IQS333 – 0xC8

 Read from the IQS333 – 0xC9

To confirm the address, the software
compares the received address with the
device address. Please contact your local

Azoteq distributor for devices with
preconfigured I2C addresses. The two
sub-address bits allow 4 IQS333 slave
devices to be used on the same I2C bus,
as well as to prevent address conflict.

If more than one IQS333 are on the I2C
bus then sub-address bits must be
preconfigured.

Figure 4.2 shows an example of a Write
Control byte (C8H) for the default I2C
address of the IQS333, followed by an
acknowledge.

Figure 4.1 Control Byte Format.

Figure 4.2 Example of the Control Byte Format for a Write Operation with the
Default Device Address

1 1 0 0 1 I2C_A1 I2C_A2 R/W

LSB MSB

7 bit address

I2C Group Sub-Addresses

1 1 0 0 1 0 0 0 0

C8H ACK

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 8 of 24

All Rights Reserved. Revision 1.0 August 2013

5 IQS333 communication window

There are only two methods of entering
the I2C communication window namely
“Using the RDY Line” and “Acknowledge
Polling”. However, “Acknowledge Polling”
is discouraged, as it reduces speed and
could introduce noise on communication
lines during conversions.

5.1 Using the RDY Line

The MCU can simply wait for the ready
line to go low know when a
communication window is open. A
communication window can be invoked by
a handshake during event mode. The
handshake is done by setting the ready
line as an output, pulling it low for 10ms
and then setting it to a floating input again.
The IC will respond by pulling ready low
from its side if the handshake was
successful. This is done until an
acknowledge can be obtained. The
process is shown in Figure 5.1.

Figure 5.1 Flow diagram block for
Event Mode Handshake.

Listing 4: Event Mode Handshake

/*

 Function name: CommsIQS_event_mode_handshake

 Parameters: none

 Return: none

 Description: This function establishes a connection with

 the IQS333, while the IQS333 is in event mode.

 See description of event mode in datasheet of

 the IQS333. A timeout is incorporated to

 insure a stuck condition does not occur on the

 i2c bus, holding the MCU stuck

*/
void CommsIQS_event_mode_handshake(void)
{
 TRISBbits.TRISB0 = 0; // RDY output
 PORTBbits.RB0 = 0; // Force a communication window
 // create a delay
 delay_ms(10);
 // reset the RDY line as an input to indicate if communication was established
 TRISBbits.TRISB0 = 1; // RDY input
 delay_ms(2);
}

I
2
C Event Mode Handshake

Set RDY as Output and pull low for 10ms
Set RDY as input and floating

Then wait one clock period
Check RDY again for comms. window

If no comms. window: repeat

START

END

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 9 of 24

All Rights Reserved. Revision 1.0 August 2013

5.2 Initial Window

The initial communication window is the
first communication window after start-up
of the IQS333.

Settings can be updated at any time on
the IC and does not have to happen in the
first communication window. Figure 5.2
shows a timing diagram that illustrates
when the initial communication window
occurs.

TSTART_UP (approx.10ms) after VDDHI is
set to logic high (in this case 3.3V) the
ready line will drop to a logic low for the

initial communication window. After
addressing the IC, the required settings
should be updated (Section 6.4) and only
thereafter should a STOP bit be issued.
The initial communication window remains
open for approximately tCOMMS (10ms),
after which the ready line will go HIGH
again, the IC will then start with its
conversions.

After the conversions of all channels are
finished, another communication window
is given.

5.3 Acknowledge Polling

If the Master device does not have an I/O
available for the RDY pin, ACK polling can
be used to determine when the device is
ready for communication. The device will
not acknowledge during a conversion
cycle, this can be used to determine when
a cycle is complete and whether the
device has entered the communication
window. Once a STOP condition is sent
by the Master the device will perform the
next conversion cycle. ACK polling can be
initiated at any time during the conversion
cycle to determine if the device has
entered its communication window. The
RDY pin will function normally even if it is
not connected to a master device, or
being used during communication.

To perform ACK polling the master sends

a START condition followed by the control

byte. If the device is still busy then no

ACK will be returned. If the device has

completed its cycle the device will return

an ACK and the master can proceed with

the next read or write operation. To

summarise, when polling the following

procedures are executed:

1. The device master (MCU) generates a

START condition.

2. The device master (MCU) sends the

control byte.

Figure 5.2 Timing Diagram showing initial window

VDDHI

RDY

tSTART_UP tCOMMS

Comms. Window 14ms Comms. Window

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 10 of 24

All Rights Reserved. Revision 1.0 August 2013

3. The device master (MCU) checks if an

acknowledge was received.

4. If not received the procedure is

repeated from step 1.

5. The device master (MCU) reads from

or writes to the IQS333.

Note that polling should only be done a fix
number of times to insure that the master

does not get stuck waiting for the slave.
Especially in event mode it could take
some time for the master to get hold of a
communication window. It is also
recommended to place a pull up resistor
on the RDY line even though it is not used
to ensure that communication windows
are not randomly forced.

6 Writing to or Reading from IQS333

Once the communication window is
entered and a data transfer is initiated, a
write or a read operation can be executed.
Write and read operations are in the
format shown in Listings 5 to 8. Once the
Master is finished writing/reading, the
Master can then either generate another
start condition (repeat-start) or it could
generate a stop condition. A repeat-start
condition will allow the Master to perform
another read or write operation, without
having to wait for a conversion cycle to
finish. A stop condition will exit the

communications window and the IQS333
will continue with conversions.

The IQS333 uses a command/address

structure, which means that multiple bytes

are sent to or read from the same register

address. For example, if Proxsettings2

needs to be changed, 3 bytes need to be

sent to the IQS333. Refer to Figure 6.1 for

a flow diagram on the read/write operation

of the IQS333. Figure 6.2 show the

sequence for multiple read/writes.

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 11 of 24

All Rights Reserved. Revision 1.0 August 2013

Figure 6.1 Flow Diagram for a Read or Write Operation

>1

1

YES

Send control byte with LSB = 0

Send memory address

Generate restart

Send control byte with LSB = 1

Send control byte with LSB = 0

Send memory address
Read or

Write

Write/Read via I
2
C

Read a byte with

ACK

Read a byte with NACK

Write register value

Is last
byte?

NO

START

END

Read from register via I
2
C

Write to register via I
2
C

R

W

Number of

byte(s) to read

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 12 of 24

All Rights Reserved. Revision 1.0 August 2013

Figure 6.2 Flow Diagram for (repeated) communication

I2C Start
Set SCL as input and floating (HIGH STATE)
Wait while CLK input low (clock stretching)

Wait one I
2
C clock period

Set SDA as input and floating (HIGH STATE)
Wait two I

2
C clock periods

If ready used wait for line to become active

Set SDA as output and pull low (LOW STATE)

Wait two I
2
C clock periods

Set SCL as output and pull low (LOW STATE)

Wait two clock periods

START

END

I2C Stop
Set CLK as output and pull low (LOW STATE)

Wait two I
2
C clock periods

Set DATA as output and pull low (LOW STATE)
Wait two I

2
C clock periods

Set CLK as input and floating (HIGH STATE)
Wait while CLK input low (clock stretching)

Set DATA as input and floating (HIGH STATE)
Wait two I

2
C clock periods

I2C Repeat Start
Set DATA as input and floating (HIGH STATE)

Wait two I
2
C clock periods

Set CLK as input and floating (HIGH STATE)
Wait while CLK input low (clock stretching)

Wait two I
2
C clock periods

Set DATA as output and pull low (LOW STATE)
Wait two clock periods

Set CLK as output and pull low (LOW STATE)
Wait two I

2
C clock periods

Write/Read via I2C

Write or
Read

Again

No

Yes

Repeated Communication via I
2
C

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 13 of 24

All Rights Reserved. Revision 1.0 August 2013

6.2 Write Operation

With the R/W bit cleared in the control
byte, a write is initiated. An I2C write is
performed by sending the address,
followed by the data. The Address is only
sent once, followed by data bytes. A
block of data can be written by sending
the address followed by multiple blocks of
data. No write will take place if data is
written to a register that does not exist.
Note that the pointer doesn’t automatically
jump from the end of, for example the
wheel coordinates block to the touch
bytes, therefore a new address must be

sent to write (or read) to a new register.
An example of the write process is given
in Figure 6.3.

An example of the write operation timing
diagram can be seen in Figure 6.4, which
shows the start sequence, the write
control byte (C8H), address to write to,
data bytes and stop command on the I2C
Clock line as well as the Data line. In this
example the ATI Targets register is setup
with byte 1 (80H) and byte 2 (40H) – 1024
counts for CH0 and 512 counts for the
active channels.

DATA WRITE

S

Start Control Byte

ACK

Word Address(n)

ACK

Data n

ACK S

Stop

ACK

Data n+1

Figure 6.3 I2C Data Write

Figure 6.4 Example of a Register Write Operation setting up the ATI Targets
Register

START Write Control byte Register address + ACK STOP Byte 1 + ACK

Byte 2 + ACK

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 14 of 24

All Rights Reserved. Revision 1.0 August 2013

Listing 5: Register Write Operation

/*

 --- CommsIQS_Write() ---

 Description: Writes data to IQS device

 Input: write_addr - This is the IQS ADDRESS-COMMAND

 data - Pointer to an array of chars, which contain the data to write to

 the IQS

 NoOfBytes - The number of bytes to write to the IQS

 Limitations: This function must be preceded by one of the following function calls:

 CommsIQS_start(), CommsIQS_repeat_start(),

 This function must be followed by one of the following function calls:

 CommsIQS_repeat_start(), CommsIQS_stop

*/
void CommsIQS_Write(unsigned char i2c_addr, unsigned char write_addr,

unsigned char *data, unsigned char NoOfBytes)
{
 unsigned char i;

 CommsIQS_send((i2c_addr << 1) + 0x00); // device address + write
 CommsIQS_send(write_addr); // IQS address-command
 for (i = 0 ; i < NoOfBytes ; i++) // Send more than one byte if necessary
 CommsIQS_send(data[i]);
}

Listing 6: Write Operation

/*

 Function name: CommsIQS333_send

 Parameters: unsigned char send_data - data to be sent transmitted via the I2C

 Return: none

 Description: Transmits the data byte given as parameter via the I2C of the PIC16LF1827

 Note that the I2C communication channel must already be active before calling

this

 function, as no start bits are included in this function.

 A timeout is incorporated to insure a stuck condition

 does not occur on the i2c bus, holding the MCU stuck

*/
void CommsIQS_send(unsigned char send_data)
{
 unsigned int timeout = 1000; // create a timeout for communication

 SSP1BUF = send_data; // write transmit byte to buffer

 timeout = 1000; // Reload timer
 while (PIR1bits.SSP1IF == 0 && timeout > 0) // wait for transmit complete flag
 {
 timeout--;
 }

 PIR1bits.SSP1IF = 0; // clear flag

 while (SSP1CON2bits.ACKSTAT == 1 && timeout > 0) // verify IQS333 acknowledge
 {
 timeout--;
 }
}

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 15 of 24

All Rights Reserved. Revision 1.0 August 2013

6.3 Read Operation

With the R/W bit SET in the control byte, a
read is initiated. The process to read a
register is as follows: write to the pointer
(Word Address in Figure 6.5), initiate a
repeated-Start, read from the address.

In read mode it is the master’s
responsibility to acknowledge data read.
The slave will send the next byte (clock
stretch) if an acknowledge is given after
the master has read a byte. The slave
then waits for a repeat start or a stop
condition from the master.

Figure 6.6 shows an example of a register
read operation, where the Touch bytes

register (register 03H) is read with 2 bytes
of data. From Figure 6.6 the composition
of the register read operation can be seen.
First a start is sent to the I2C, followed by
a write control byte (C8H) then the register
to read from (register 03H in this case),
which is then followed by another start (a
repeat-start condition) and then the read
control byte (C9H) followed by the data
bytes (2 bytes is read in this example),
with the last byte read with a NACK and
then a stop follows, indicating the end of
communication.

Figure 6.6 Example of a Register Read Operation reading 2 Bytes from the
Touch bytes Register

S

Start Control Byte

ACK

Data n

Register Read

S

Stop

NACKS

Start Control Byte

ACK

Word Address(n)

ACK

Figure 6.5 I2C Register Read

START Write Control byte Register address + ACK STOP Read Control Byte

Byte 1 + ACK Repeat-
START

Byte 2 + NACK

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 16 of 24

All Rights Reserved. Revision 1.0 August 2013

Listing 7: Read I2C data

/* ---- CommsIQS_Read() ----

 Description: Reads data from the IQS

 Input: read_addr - This is the IQS ADDRESS-COMMAND

 data - Pointer to an array of chars, where the data READ from the IQS is stored

 NoOfBytes - The number of bytes to read from theIQS333

 Limitations: This function must be preceded by one of the following function calls:

 CommsIQS_start(), CommsIQS_repeat_start(),

 This function must be followed by one of the following function calls:

 CommsIQS_repeat_start(), CommsIQS_stop

*/
void CommsIQS_Read(unsigned char i2c_addr, unsigned char read_addr, unsigned char *data, unsigned char

NoOfBytes)

{

 unsigned char i;

 CommsIQS_send((i2c_addr << 1) + 0x00); // device address + write

 CommsIQS_send(read_addr); // IQS address-command

 CommsIQS_repeat_start();

 CommsIQS_send((i2c_addr << 1) + 0x01); // device address + read

 if (NoOfBytes > 1)

 {

 for (i = 0; i < NoOfBytes - 1; i++)

 data[i] = CommsIQS_read_ack(); // all bytes except last must be followed by an ACK

 }

 data[NoOfBytes-1] = CommsIQS_read_nack(); // last byte read must be followed by a NACK

}

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 17 of 24

All Rights Reserved. Revision 1.0 August 2013

Listing 8: Read byte with an ACK

/*

 Function name: CommsIQS_read_ack

 Parameters: none

 Return: unsigned char - the data received via the I2C

 Description: Enables the Master Receive Mode of the I2C module on the PIC16LF1827. The data received is

 returned and a ACK acknowledge is sent to the IQS259 to indicate that another read command

 will follow this one.

 A timeout is incorporated to insure a stuck condition

 does not occur on the i2c bus, holding the MCU stuck

*/
unsigned char CommsIQS_read_ack(void)
{
 unsigned char temp;
 unsigned int timeout = 1000; // create a timeout for communication

 SSP1CON2bits.RCEN = 1; // enable master receiver mode
 while (PIR1bits.SSP1IF == 0 && timeout > 0) // wait for byte received flag
 {
 timeout--;
 }

 PIR1bits.SSP1IF = 0; //clear flag

 timeout = 1000; // Reload timer
 while (SSP1STATbits.BF == 0 && timeout > 0) // wait for buffer full flag (receive complete)
 {
 timeout--;
 }

 temp = SSP1BUF; // store received byte

 SSP1CON2bits.ACKDT = 0; // enable ACK
 SSP1CON2bits.ACKEN = 1; // execute ACK sequence

 timeout = 1000; // Reload timer
 while (PIR1bits.SSP1IF == 0 && timeout > 0) // Wait for ACK transmission complete
 {
 timeout--;
 }

 PIR1bits.SSP1IF = 0; // clear flag

 timeout = 1000; // Reload timer
 while (SSP1CON2bits.ACKEN == 1 && timeout > 0) // verify acknowledge sequence is complete
 {
 timeout--;
 }

 return temp; // return received data
}

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 18 of 24

All Rights Reserved. Revision 1.0 August 2013

Listing 9: Read byte with a NACK

/*

 Function name: CommsIQS_read_nack

 Parameters: none

 Return: unsigned char - the data received via the I2C

 Description: Enables the Master Receive Mode of the I2C module on the PIC16LF1827. The data received is

 returned and a NACK acknowledge is sent to the IQS259 to indicate that this was the final

 read of the current continuous read block.

 A stop or repeated start command has be called next.

 A timeout is incorporated to insure a stuck condition

 does not occur on the i2c bus, holding the MCU stuck

*/
unsigned char CommsIQS_read_nack(void)
{
 unsigned char temp;
 unsigned int timeout = 1000; // create a timeout for communication

 SSP1CON2bits.RCEN = 1; // enable master receiver mode
 while (PIR1bits.SSP1IF == 0 && timeout > 0) // wait for byte received flag
 {
 timeout--;
 }

 PIR1bits.SSP1IF = 0; // clear flag

 timeout = 1000; // Reload timer
 while (SSP1STATbits.BF == 0 && timeout > 0) // wait for buffer full flag (receive complete
 {
 timeout--;
 }

 temp = SSP1BUF; // store received byte

 SSP1CON2bits.ACKDT = 1; // enable NACK
 SSP1CON2bits.ACKEN = 1; // execute NACK sequence

 timeout = 1000; // Reload timer
 while (PIR1bits.SSP1IF == 0 && timeout > 0) // Wait for NACK transmission complete
 {
 timeout--;
 }

 PIR1bits.SSP1IF = 0; // clear flag

 timeout = 1000; // Reload timer
 while (SSP1CON2bits.ACKEN == 1 && timeout > 0) // verify acknowledge sequence is complete
 {
 timeout--;
 }

 return temp; // return data
}

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 19 of 24

All Rights Reserved. Revision 1.0 August 2013

6.4 Adjusting Settings for IQS333

Refer to the IQS333 Command/Address
Structure in its datasheet for specific
addresses of registers. Setup for the IQS333
can be done anytime that a communication
window is available, which means the RDY is
pulled low by the IQS333. The setup for the
IQS333 is done by sending an array of values
to the required register. This is done for all the
registers required for setup.

Figure 6.7 shows a flow diagram of the
initialisation of the IQS333.

Listing 10 shows an example with only a few

settings, on how to setup the IQS333.

From within the GUI of the IQS333 (available
on the web at

http://www.azoteq.com/proximity-switches-
design/capacitance-sensor-software-and-
tools.html) it is possible to export an *.h file,
IQS333_init.h, which contains all of the
settings of the IQS333 as setup in the GUI.
This file can then be pasted into the working
folder of the example code, or user code, in
order to setup the device as it was setup in the
GUI. This enables quick setup of the IQS333
for specific devices. Figure 6.3 shows how to
export the *.h file from the GUI. Note that this
is only available on version 1.0.1.40 or later.

Replace the IQS333_init.h file in the example
project (or user project) folder to load the new
settings.

Figure 6.2 Initialize I2C Flow Diagram

END

START

Wait for Device to do ATI

Start I2C Comms

Wait for RDY low

Setup an array of
register values

Redo ATI

Adjust IC Settings

Initialize IQS333 I
2
C

http://www.azoteq.com/proximity-switches-design/capacitance-sensor-software-and-tools.html
http://www.azoteq.com/proximity-switches-design/capacitance-sensor-software-and-tools.html
http://www.azoteq.com/proximity-switches-design/capacitance-sensor-software-and-tools.html

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 20 of 24

All Rights Reserved. Revision 1.0 August 2013

Figure 6.3 Export settings from the IQS333 GUI to the Example code

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 21 of 24

All Rights Reserved. Revision 1.0 August 2013

Listing 10: Adjusting IQS333 settings

/**

 * This function sets up the IQS333 for optimum performance in this device -

 * these values can however be overwritten from the GUI

 * Params: None

 */
void IQS333_Button_Wheel_Settings(void)
{

 unsigned char data_buffer[12];

 lights_on();

 /* Read product number */
 CommsIQS_start();
 CommsIQS_Read(IQS333_ADDR, VERSION_INFO, &data_buffer[0], 2);
 CommsIQS_stop();

 /* Switch the IQS333 to projection mode */
 data_buffer[0] = SYSTEM_FLAGS_VAL;
 CommsIQS_start();
 CommsIQS_Write(IQS333_ADDR, FLAGS, &data_buffer[0], 1);
 CommsIQS_stop();

 // set active channels on iqs333 CH0 CH1 CH2 CH4 CH5 CH
 /* Set active channels */
 data_buffer[0] = ACTIVE_CH0;
 data_buffer[1] = ACTIVE_CH1;
 CommsIQS_start();
 CommsIQS_Write(IQS333_ADDR, ACTIVE_CHANNELS, &data_buffer[0], 2);
 CommsIQS_stop();

 /* Setup Touch and Prox thresholds for each channel */
 data_buffer[0] = PROX_THRESHOLD;
 data_buffer[1] = TOUCH_THRESHOLD_CH1;
 data_buffer[2] = TOUCH_THRESHOLD_CH2;
 data_buffer[3] = TOUCH_THRESHOLD_CH3;
 data_buffer[4] = TOUCH_THRESHOLD_CH4;
 data_buffer[5] = TOUCH_THRESHOLD_CH5;
 data_buffer[6] = TOUCH_THRESHOLD_CH6;
 data_buffer[7] = TOUCH_THRESHOLD_CH7;
 data_buffer[8] = TOUCH_THRESHOLD_CH8;
 data_buffer[9] = TOUCH_THRESHOLD_CH9;
 CommsIQS_start();
 CommsIQS_Write(IQS333_ADDR, THRESHOLDS , &data_buffer[0], 10);
 CommsIQS_stop();

 /* Set the ATI Targets (Target Counts) */
 data_buffer[0] = ATI_TARGET_CH0;
 data_buffer[1] = ATI_TARGET_CH0_9;
 CommsIQS_start();
 CommsIQS_Write(IQS333_ADDR, ATI_TARGETS, &data_buffer[0], 2);
 CommsIQS_stop();

 /* wait until the ATI algorithm is done */
 do
 {
 delay_ms (15);
 CommsIQS_start();
 CommsIQS_Read(IQS333_ADDR, FLAGS, &data_buffer[0], 1);
 CommsIQS_stop();
 }
 while ((data_buffer[0] & 0b00000100) == 0b00000100);

 // read the error bit to determine if an ATI error occured
 CommsIQS_start();
 CommsIQS_Read(IQS333_ADDR,PROXSETTINGS , &data_buffer[0], 2);
 CommsIQS_stop();

 // if an ATI error occured, switch on buzzer
 if (data_buffer[1] & 0x02 == 0x02)
 {
 buzzer (5);
 }

 lights_off();
} // End IQS333_Button_Wheel_Settings()

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 22 of 24

All Rights Reserved. Revision 1.0 August 2013

7 Timing Diagrams

A few important timing diagrams of the IQS333
are shown in this section. The first
communication window is shown in Figure 7.1,
which occurs approximately 10ms after the
IQS333 is switched on (VDDHI = 1). This
window occurs when the RDY line is pulled low
by the IQS333 for the first time. Only at this
stage can communication take place between
the MCU and the IQS333. Figure 7.2 shows
the time between two adjacent communication
windows, which happens each time that the
IQS333 has finished with conversions. The
time between the two communication windows
is approximately 14ms, with 7 channels
activated. Note that this time is subject to the
active channels, as well as other settings.

The time between the stop command of the I2C
communication and the RDY line going high is
approximately 55µs and is shown in Figure 7.3.
Also shown in Figure 7.3 is the time from the
RDY line going high to the charging of channel
1, which is approximately 0.3ms. Avoid
sending a Start before the current
communications window has closed.

All of the timing diagrams, including the viewer
software, can be downloaded from
http://www.azoteq.com/proximity-sensors-
products/proxsense-products/121-products-
proxsense-iqs333.html.

Figure 7.1 The First communication window on the IQS333 – RDY is low for the
first time

VDDHI = 1

http://www.azoteq.com/proximity-sensors-products/proxsense-products/121-products-proxsense-iqs333.html
http://www.azoteq.com/proximity-sensors-products/proxsense-products/121-products-proxsense-iqs333.html
http://www.azoteq.com/proximity-sensors-products/proxsense-products/121-products-proxsense-iqs333.html

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 23 of 24

All Rights Reserved. Revision 1.0 August 2013

Figure 7.2 Two adjacent communication windows with 8 active channels

Figure 7.3 Timing between I2C Stop and RDY high and RDY high to next
Conversion of channel 1. Avoid sending a start before the current window has

closed.

Adjacent Communication windows

I
2
C Stop

IQ Switch®

ProxSense® Series

Copyright © Azoteq (Pty) Ltd. 2013 Page 24 of 24

All Rights Reserved. Revision 1.0 August 2013

8 Contact Information

 USA Asia South Africa

Physical

Address

6507 Jester Blvd
Bldg 5, suite 510G
Austin
TX 78750
USA

Rm1725, Glittery City

Shennan Rd

Futian District

Shenzhen, 518033

China

109 Main Street

Paarl

7646

South Africa

Postal

Address

6507 Jester Blvd
Bldg 5, suite 510G
Austin
TX 78750
USA

Rm1725, Glittery City

Shennan Rd

Futian District

Shenzhen, 518033

China

PO Box 3534

Paarl

7620

South Africa

Tel +1 512 538 1995 +86 755 8303 5294

ext 808

+27 21 863 0033

Fax +1 512 672 8442 +27 21 863 1512

Email kobusm@azoteq.com linayu@azoteq.com.cn info@azoteq.com

Please visit www.azoteq.com for a list of distributors and worldwide representation.

The following patents relate to the device or usage of the device: US 6,249,089 B1, US 6,952,084 B2, US 6,984,900
B1, US 7,084,526 B2, US 7,084,531 B2, EP 1 120 018 B2, EP 1 206 168 B1, EP 1 308 913 B1, EP 1 530 178 A1,
ZL 99 8 14357.X, AUS 761094, HK 104 14100A, US13/644,558, US13/873,418

IQ Switch
®
, SwipeSwitch™, ProxSense

®
, LightSense™, AirButton

®
 and the logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant
the accuracy, completeness or reliability of the information contained herein. All content and information are provided on a “as is” basis only, without any representations or warranties, express
or implied, of any kind, including representations about the suitability of these products or information for any purpose. Azoteq disclaims all warranties and conditions with regard to these
products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party
intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance,
error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely
for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for
application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No
licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or
exclusions does not apply, it is agreed that Azoteq’s total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not
exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements
and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior
notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com.

WWW.AZOTEQ.COM

info@azoteq.com

mailto:kobusm@azoteq.com
mailto:linayu@azoteq.com.cn
mailto:info@azoteq.com
http://www.azoteq.com/
http://www.azoteq.com/
http://www.azoteq.com/

